PPC-censoring | R Documentation |
Compare the empirical distribution of censored data y
to the
distributions of simulated/replicated data yrep
from the posterior
predictive distribution. See the Plot Descriptions section, below, for
details.
Although some of the other bayesplot plots can be used with censored
data, ppc_km_overlay()
is currently the only plotting function designed
specifically for censored data. We encourage you to suggest or contribute
additional plots at
github.com/stan-dev/bayesplot.
ppc_km_overlay(
y,
yrep,
...,
status_y,
left_truncation_y = NULL,
extrapolation_factor = 1.2,
size = 0.25,
alpha = 0.7
)
ppc_km_overlay_grouped(
y,
yrep,
group,
...,
status_y,
left_truncation_y = NULL,
extrapolation_factor = 1.2,
size = 0.25,
alpha = 0.7
)
y |
A vector of observations. See Details. |
yrep |
An |
... |
Currently only used internally. |
status_y |
The status indicator for the observations from |
left_truncation_y |
Optional parameter that specifies left-truncation
(delayed entry) times for the observations from |
extrapolation_factor |
A numeric value (>=1) that controls how far the
plot is extended beyond the largest observed value in |
size , alpha |
Passed to the appropriate geom to control the appearance of
the |
group |
A grouping variable of the same length as |
A ggplot object that can be further customized using the ggplot2 package.
ppc_km_overlay()
Empirical CCDF estimates of each dataset (row) in yrep
are overlaid, with
the Kaplan-Meier estimate (Kaplan and Meier, 1958) for y
itself on top
(and in a darker shade). This is a PPC suitable for right-censored y
.
Note that the replicated data from yrep
is assumed to be uncensored. Left
truncation (delayed entry) times for y
can be specified using
left_truncation_y
.
ppc_km_overlay_grouped()
The same as ppc_km_overlay()
, but with separate facets by group
.
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013). Bayesian Data Analysis. Chapman & Hall/CRC Press, London, third edition. (Ch. 6)
Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association. 53(282), 457–481. doi:10.1080/01621459.1958.10501452.
Other PPCs:
PPC-discrete
,
PPC-distributions
,
PPC-errors
,
PPC-intervals
,
PPC-loo
,
PPC-overview
,
PPC-scatterplots
,
PPC-test-statistics
color_scheme_set("brightblue")
# For illustrative purposes, (right-)censor values y > 110:
y <- example_y_data()
status_y <- as.numeric(y <= 110)
y <- pmin(y, 110)
# In reality, the replicated data (yrep) would be obtained from a
# model which takes the censoring of y properly into account. Here,
# for illustrative purposes, we simply use example_yrep_draws():
yrep <- example_yrep_draws()
dim(yrep)
# Overlay 25 curves
ppc_km_overlay(y, yrep[1:25, ], status_y = status_y)
# With extrapolation_factor = 1 (no extrapolation)
ppc_km_overlay(y, yrep[1:25, ], status_y = status_y, extrapolation_factor = 1)
# With extrapolation_factor = Inf (show all posterior predictive draws)
ppc_km_overlay(y, yrep[1:25, ], status_y = status_y, extrapolation_factor = Inf)
# With separate facets by group:
group <- example_group_data()
ppc_km_overlay_grouped(y, yrep[1:25, ], group = group, status_y = status_y)
# With left-truncation (delayed entry) times:
min_vals <- pmin(y, apply(yrep, 2, min))
left_truncation_y <- rep(0, length(y))
condition <- y > mean(y) / 2
left_truncation_y[condition] <- pmin(
runif(sum(condition), min = 0.6, max = 0.99) * y[condition],
min_vals[condition] - 0.001
)
ppc_km_overlay(y, yrep[1:25, ], status_y = status_y,
left_truncation_y = left_truncation_y)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.