FarmCPU | R Documentation |
FarmCPU: GWAS and GS by using FarmCPU method
FarmCPU(
Y = NULL,
GD = NULL,
GM = NULL,
CV = NULL,
GP = NULL,
Yt = NULL,
DPP = 1e+06,
kinship.algorithm = "FARM-CPU",
file.output = TRUE,
cutOff = 0.01,
method.GLM = "FarmCPU.LM",
method.sub = "reward",
method.sub.final = "reward",
method.bin = "static",
bin.size = c(5e+05, 5e+06, 5e+07),
bin.selection = seq(10, 100, 10),
memo = NULL,
Prior = NULL,
ncpus = 1,
maxLoop = 10,
threshold.output = 0.01,
WS = c(1, 1000, 10000, 1e+05, 1e+06, 1e+07),
alpha = c(0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1),
maxOut = 100,
QTN.position = NULL,
converge = 1,
iteration.output = FALSE,
acceleration = 0,
model = "A",
MAF.calculate = FALSE,
plot.style = "FarmCPU",
p.threshold = NA,
QTN.threshold = 0.01,
maf.threshold = 0.03,
ycor = NULL,
bound = NULL
)
Y |
= NULL, a data.frame of phenotype data, first column is sample name, second column is the trait. |
GD |
= NULL, |
GM |
= NULL, |
CV |
= NULL, |
GP |
= NULL, |
Yt |
= NULL, |
DPP |
= 1000000, |
kinship.algorithm |
= "FARM-CPU", |
file.output |
= TRUE, |
cutOff |
= 0.01, |
method.GLM |
= "FarmCPU.LM", |
method.sub |
= "reward", |
method.sub.final |
= "reward", |
method.bin |
= "static", |
bin.size |
= c(5e5,5e6,5e7), |
bin.selection |
= seq(10,100,10), |
memo |
= NULL, |
Prior |
= NULL, |
ncpus |
= 1, |
maxLoop |
= 10, |
threshold.output |
= .01, |
WS |
= c(1e0,1e3,1e4,1e5,1e6,1e7), |
alpha |
= c(.01,.05,.1,.2,.3,.4,.5,.6,.7,.8,.9,1), |
maxOut |
= 100, |
QTN.position |
= NULL, |
converge |
= 1, |
iteration.output |
= FALSE, |
acceleration |
= 0, |
model |
= "A", |
MAF.calculate |
= FALSE, |
plot.style |
= "FarmCPU", |
p.threshold |
= NA, |
QTN.threshold |
= 0.01, |
maf.threshold |
= 0.03, |
ycor |
= NULL, |
bound |
= NULL |
A list.
Xiaolei Liu and Zhiwu Zhang
## Not run:
myPhenoFile <- system.file("extdata", "mdp_traits.txt.gz", package = "GAPIT3")
myPhenotypes <- read.table(myPhenoFile, header = TRUE)
myFarmCPU <- FarmCPU(myPhenotypes[, 1:2])
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.