cluster_cell | R Documentation |
Cluster only single cell data or combination of single cell and bulk data. Clusters are created by first building a graph, where nodes are cells and edges represent connections between nearest neighbors, then partitioning the graph. The cluster labels are stored in the cluster
column of colData
slot of SingleCellExperiment
.
cluster_cell(
sce,
graph.meth = "knn",
dimred = "PCA",
knn.gr = list(),
snn.gr = list(),
cluster = "wt",
wt.arg = list(steps = 4),
fg.arg = list(),
sl.arg = list(spins = 25),
le.arg = list(),
eb.arg = list()
)
sce |
The single cell data or combination of single cell and bulk data at log2 scale after dimensionality reduction in form of |
graph.meth |
Method to build a nearest-neighbor graph, |
dimred |
A string of |
knn.gr |
Additional arguments in a named list passed to |
snn.gr |
Additional arguments in a named list passed to |
cluster |
The clustering method. One of |
wt.arg , fg.arg , sl.arg , le.arg , eb.arg |
A named list of arguments passed to |
A SingleCellExperiment
object.
Jianhai Zhang jzhan067@ucr.edu
Dr. Thomas Girke thomas.girke@ucr.edu
Morgan M, Obenchain V, Hester J, Pagès H (2021). SummarizedExperiment: SummarizedExperiment container. R package version 1.24.0, https://bioconductor.org/packages/SummarizedExperiment. Amezquita R, Lun A, Becht E, Carey V, Carpp L, Geistlinger L, Marini F, Rue-Albrecht K, Risso D, Soneson C, Waldron L, Pages H, Smith M, Huber W, Morgan M, Gottardo R, Hicks S (2020). “Orchestrating single-cell analysis with Bioconductor.” Nature Methods, 17, 137–145. https://www.nature.com/articles/s41592-019-0654-x. Lun ATL, McCarthy DJ, Marioni JC (2016). “A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor.” F1000Res., 5, 2122. doi: 10.12688/f1000research.9501.2. Csardi G, Nepusz T: The igraph software package for complex network research, InterJournal, Complex Systems 1695. 2006. https://igraph.org
library(scran); library(scuttle)
sce <- mockSCE(); sce <- logNormCounts(sce)
# Modelling the variance.
var.stats <- modelGeneVar(sce)
sce.dimred <- denoisePCA(sce, technical=var.stats, subset.row=rownames(var.stats))
sce.clus <- cluster_cell(sce=sce.dimred, graph.meth='snn', dimred='PCA')
# Clusters.
table(colData(sce.clus)$label)
# See details in function "coclus_meta" by running "?coclus_meta".
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.