plot_dim: Embedding plots of single cells/bulk tissues after...

View source: R/plot_dim.R

plot_dimR Documentation

Embedding plots of single cells/bulk tissues after co-clustering

Description

Embedding plots of single cells/bulk tissues after co-clustering

Usage

plot_dim(
  sce,
  dim = NULL,
  color.by,
  group.sel = NULL,
  row.sel = NULL,
  cocluster.only = TRUE,
  x.break = NULL,
  y.break = NULL,
  panel.grid = FALSE,
  lgd.title.size = 13,
  lgd.key.size = 0.03,
  lgd.text.size = 12,
  point.size = 3,
  bulk.size = 5,
  alpha = 0.7,
  stroke = 0.2,
  bulk.stroke = 1,
  axis.text.size = 10,
  axis.title.size = 11,
  lgd.pos = "right",
  lgd.ncol = 1,
  lgd.l = 0,
  lgd.r = 0.01
)

Arguments

sce

A SingleCellExperiment object with reduced dimensions seen by reducedDimNames(sce).

dim

One of PCA, UMAP, TSNE, the method for reducing dimensionality.

color.by

One of the column names in the colData slot of sce.

group.sel

An entry in the color.by column. All cells under this entry are selected as a group to show.

row.sel

A numeric vector of row numbers in the colData slot of sce. The cells corresponding to these rows are highlighted and plotted on top of other cells.

cocluster.only

Logical, only applicable when color.by='cluster'. If TRUE (default), only coclusters (including bulk and cells) are colored and the rest are in gray.

x.break, y.break

Two numeric vectors for x, y axis breaks respectively. E.g. seq(-10, 10, 2). The default is NULL.

panel.grid

Logical. If TRUE, the panel grid will be shown.

lgd.title.size, lgd.key.size, lgd.text.size

The size of legend plot title, legend key, legend text respectively.

point.size, bulk.size

The size of cells and bulk tissues respectively.

alpha

The transparency of cells and bulk tissues. The default is 0.6.

stroke, bulk.stroke

The line width of cells and bulk tissues respectively.

axis.text.size, axis.title.size

The size of axis text and title respectively.

lgd.pos

The legend position, one of top, right, bottom, left.

lgd.ncol

The number of legend columns.

lgd.l, lgd.r

The left and right margins of legends.

Value

An object of ggplot.

Author(s)

Jianhai Zhang jzhan067@ucr.edu
Dr. Thomas Girke thomas.girke@ucr.edu

References

Amezquita R, Lun A, Becht E, Carey V, Carpp L, Geistlinger L, Marini F, Rue-Albrecht K, Risso D, Soneson C, Waldron L, Pages H, Smith M, Huber W, Morgan M, Gottardo R, Hicks S (2020). “Orchestrating single-cell analysis with Bioconductor.” Nature Methods, 17, 137–145. https://www.nature.com/articles/s41592-019-0654-x H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016. Morgan M, Obenchain V, Hester J, Pagès H (2021). SummarizedExperiment: SummarizedExperiment container. R package version 1.24.0, https://bioconductor.org/packages/SummarizedExperiment. Lun ATL, McCarthy DJ, Marioni JC (2016). “A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor.” F1000Res., 5, 2122. doi: 10.12688/f1000research.9501.2. McCarthy DJ, Campbell KR, Lun ATL, Willis QF (2017). “Scater: pre-processing, quality control, normalisation and visualisation of single-cell RNA-seq data in R.” Bioinformatics, 33, 1179-1186. doi: 10.1093/bioinformatics/btw777.

Examples

library(scran); library(scuttle) 
sce <- mockSCE(); sce <- logNormCounts(sce) 
# Modelling the variance.
var.stats <- modelGeneVar(sce) 
sce <- denoisePCA(sce, technical=var.stats, subset.row=rownames(var.stats)) 
plot_dim(sce, dim='PCA', color.by='Cell_Cycle')
# See function "coclus_meta" by running "?coclus_meta".

jianhaizhang/spatialHeatmap documentation built on Nov. 28, 2024, 4:44 p.m.