reduce_dim | R Documentation |
A meta function for reducing dimensionality in count data.
reduce_dim(
sce,
prop = 0.1,
min.dim = 13,
max.dim = 50,
model.var = list(assay.type = "logcounts"),
top.hvg = list(),
de.pca = list(assay.type = "logcounts"),
pca = FALSE,
tsne = list(dimred = "PCA", ncomponents = 2),
umap = list(dimred = "PCA")
)
sce |
Normalized single cell data in |
prop |
Numeric scalar specifying the proportion of genes to report as highly variable genes (HVGs) in |
min.dim , max.dim |
Integer scalars specifying the minimum ( |
model.var |
Additional arguments in a named list passed to |
top.hvg |
Additional arguments in a named list passed to |
de.pca |
Additional arguments in a named list passed to |
pca |
Logical, if |
tsne |
Additional arguments in a named list passed to |
umap |
Additional arguments in a named list passed to |
A SingleCellExperiment
object.
Jianhai Zhang jzhan067@ucr.edu
Dr. Thomas Girke thomas.girke@ucr.edu
Amezquita R, Lun A, Becht E, Carey V, Carpp L, Geistlinger L, Marini F, Rue-Albrecht K, Risso D, Soneson C, Waldron L, Pages H, Smith M, Huber W, Morgan M, Gottardo R, Hicks S (2020). “Orchestrating single-cell analysis with Bioconductor.” Nature Methods, 17, 137–145. https://www.nature.com/articles/s41592-019-0654-x. Lun ATL, McCarthy DJ, Marioni JC (2016). “A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor.” F1000Res., 5, 2122. doi: 10.12688/f1000research.9501.2. McCarthy DJ, Campbell KR, Lun ATL, Willis QF (2017). “Scater: pre-processing, quality control, normalisation and visualisation of single-cell RNA-seq data in R.” Bioinformatics, 33, 1179-1186. doi: 10.1093/bioinformatics/btw777.
library(scran); library(scuttle)
sce <- mockSCE()
sce.qc <- qc_cell(sce, qc.metric=list(subsets=list(Mt=rowData(sce)$featureType=='mito'), threshold=1))
sce.norm <- norm_cell(sce.qc)
sce.dimred <- reduce_dim(sce.norm)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.