Description Usage Arguments Value Author(s) References See Also Examples
print the number of nonzero coefficient curves for the functional compositional
predictors at each lam along the FuncompCGL path.
1 2 |
x |
fitted |
digits |
significant digits in printout. |
... |
not used. |
a two-column matrix; the first column DF gives the number of nonzero
coefficients and
the second column Lam gives the correspondint lam values.
Zhe Sun and Kun Chen
Sun, Z., Xu, W., Cong, X., Li G. and Chen K. (2020) Log-contrast regression with functional compositional predictors: linking preterm infant's gut microbiome trajectories to neurobehavioral outcome, https://arxiv.org/abs/1808.02403 Annals of Applied Statistics
FuncompCGL, and coef,
predict and
plot methods for "FuncompCGL" object.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | df_beta = 5
p = 30
beta_C_true = matrix(0, nrow = p, ncol = df_beta)
beta_C_true[1, ] <- c(-0.5, -0.5, -0.5 , -1, -1)
beta_C_true[2, ] <- c(0.8, 0.8, 0.7, 0.6, 0.6)
beta_C_true[3, ] <- c(-0.8, -0.8 , 0.4 , 1 , 1)
beta_C_true[4, ] <- c(0.5, 0.5, -0.6 ,-0.6, -0.6)
Data <- Fcomp_Model(n = 50, p = p, m = 2, intercept = TRUE,
SNR = 2, sigma = 2, rho_X = 0, rho_T = 0.5, df_beta = df_beta,
n_T = 20, obs_spar = 1, theta.add = FALSE,
beta_C = as.vector(t(beta_C_true)))
m1 <- FuncompCGL(y = Data$data$y, X = Data$data$Comp ,
Zc = Data$data$Zc, intercept = Data$data$intercept,
k = df_beta)
print(m1)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.