Description Usage Arguments Value Examples
This code will estimate richness using non-parametric estimators for sampled cells, defined by using the raster provided in the arguments. Completeness will be estimated based on the proportion of estimated species that are actually recorded.
1 | RichSamp(occ.table, in.raster, field.names)
|
occ.table |
data frame with species occurrence and sampling information. Must contain coordinates x, coordinates y, species, a sampling event id (e.g. date) and count field. |
in.raster |
a raster in the same projection of coordinates provided in the occurrence table and with the desired cell size for analyses. |
field.names |
a vector of field names in the occurrence table in the following order: coordinates x, coordinates y, event id, species name, count and cell field. |
A data frame of observed species richness(Species), number of surveys (n), estimated species richness (chao, jack1, jack2, boot) and completeness of sampling (C_chao, C_jack1, C_jack2, C_boot) for each sampled cell. XY coordinates of each cell and standard errors (suffix .se) are also provided.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | ## Not run:
#To compute cell stats for colombian bats
library(lubridate)
library(raster)
library(rgbif)
library(WhereNext)
#Get occurrence data
gbif.key <- name_backbone(name = "Chiroptera")
gbif.res <- DownloadGBIF(gbif.key$orderKey, "your username", "your email", "your password", "CO") #Enter your GBIF credentials here
#Get environmental data
col <- getData("GADM", country="COL",level=0)
env.vars <- getData("worldclim", var="bio", res=5)
env.vars <- crop(env.vars, col)
env.vars <- mask(env.vars, col)
env.vars <- Normalize(env.vars) #Normalize environmental variables
env.vars <- RemCorrLayers(env.vars, 0.8) #Remove variables correlated more than r=0.8.
#Do minimal occ.table cleaning
occ.table <- gbif.res$occ.table
occ.table$eventDate <- as_date(occ.table$eventDate)
occ.table$individualCount <- 1 #Data is presence only
occ.table.clean <- subset(occ.table, !is.na(eventDate) & taxonRank=="SPECIES")
row.names(occ.table.clean) <- 1:nrow(occ.table.clean)
occ.table.clean <- CoordinateCleaner::clean_coordinates(occ.table.clean,
lon="decimalLongitude",
lat="decimalLatitude",
species="species",
countries = "countryCode",
value="clean",
tests=c("capitals","centroids", "equal", "gbif",
"institutions", "outliers", "seas","zeros"))
#Estimate cell sampling stats & filter occurrence data
occ.table.clean$cell <- cellFromXY(env.vars, occ.table.clean[, c("decimalLongitude","decimalLatitude")])
cell.stats <- RichSamp(occ.table.clean, env.vars, c("decimalLongitude","decimalLatitude","eventDate","species","individualCount","cell"))
selected.cells <- cell.stats$cell[which(cell.stats$n>3&cell.stats$Species>5)] #Consider places with at least 3 sampling events and 5 species recorded as well sampled
occ.table.sel <- occ.table.clean[which(occ.table.clean$cell %in% selected.cells), ] #Use only ocurrences of well sampled cells
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.