Description Usage Arguments Details Value References Examples
Wrapper function to run a Generalized Dissimilarity Model
1 | RunGDM(occ.table, env.vars, index, use.geo, do.VarSel, field.names)
|
occ.table |
data frame with species occurrence and sampling information. Each occurrence must contain XY coordinates species fields. |
env.vars |
a rasterStack object of meaningful environmental variables to predict biological dissimilarity. |
index |
the dissimilarity index to use. Valid options are "jaccard", "bray" or "betasim". |
use.geo |
logical. If TRUE geographic distance is included in model as a predictor. |
do.VarSel |
logical. If TRUE variable selection based on explained deviance is performed. |
field.names |
a vector of field names in the occurrence table in the following order: species name, coordinates x, coordinates y. |
RunGDM adds functionality to the gdm function available in the gdm package. Specifically, 1) it adds betasim, a richness independent measure of turnover (Lenon et al. 2001), 2) perfoms variable selection by excluding from models variables with coefficients of 0 or that upon removal decrease the explained deviance less than 5 to aid in the visualization of turnover.
A list with the following objects:
The input occurrence table
A gdm object returned by the gdm function in gdm-package
A RasterStack of gdm transformed environmental predictors returned by the gdm.transform function in gdm-package
A list returned by the MapGDMLight function
Lennon, J. J., Koleff, P., Greenwood, J. J. D., & Gaston, K. J. (2001). The geographical structure of British bird distributions: diversity, spatial turnover and scale. Journal of Animal Ecology, 70(6), 966-979.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | ## Not run:
#To compute cell stats for colombian bats
library(lubridate)
library(raster)
library(rgbif)
library(WhereNext)
#Get occurrence data
gbif.key <- name_backbone(name = "Chiroptera")
gbif.res <- DownloadGBIF(gbif.key$orderKey, "your username", "your email", "your password", "CO") #Enter your GBIF credentials here
#Get environmental data
col <- getData("GADM", country="COL",level=0)
env.vars <- getData("worldclim", var="bio", res=5)
env.vars <- crop(env.vars, col)
env.vars <- mask(env.vars, col)
env.vars <- Normalize(env.vars) #Normalize environmental variables
env.vars <- RemCorrLayers(env.vars, 0.8) #Remove variables correlated more than r=0.8.
#Do minimal occ.table cleaning
occ.table <- gbif.res$occ.table
occ.table$eventDate <- as_date(occ.table$eventDate)
occ.table$individualCount <- 1 #Data is presence only
occ.table.clean <- subset(occ.table, !is.na(eventDate) & taxonRank=="SPECIES")
row.names(occ.table.clean) <- 1:nrow(occ.table.clean)
occ.table.clean <- CoordinateCleaner::clean_coordinates(occ.table.clean,
lon="decimalLongitude",
lat="decimalLatitude",
species="species",
countries = "countryCode",
value="clean",
tests=c("capitals","centroids", "equal", "gbif",
"institutions", "outliers", "seas","zeros"))
#Estimate cell sampling stats & filter occurrence data
occ.table.clean$cell <- cellFromXY(env.vars, occ.table.clean[, c("decimalLongitude","decimalLatitude")])
cell.stats <- RichSamp(occ.table.clean, env.vars, c("decimalLongitude","decimalLatitude","eventDate","species","individualCount","cell"))
selected.cells <- cell.stats$cell[which(cell.stats$n>3&cell.stats$Species>5)] #Consider places with at least 3 sampling events and 5 species recorded as well sampled
occ.table.sel <- occ.table.clean[which(occ.table.clean$cell %in% selected.cells), ] #Use only ocurrences of well sampled cells
#Run and map GDM
m1 <- RunGDM(occ.table.sel, env.vars, "bray", TRUE, TRUE, c("species", "decimalLongitude", "decimalLatitude"))
plotRGB(m1$gdm.map$pcaRast)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.