packrat/lib-R/x86_64-w64-mingw32/3.6.1/mgcv/tests/gam.R

## \donttest examples from gam

require(mgcv)

## now simulate poisson data...
set.seed(6)
dat <- gamSim(1,n=2000,dist="poisson",scale=.1)

## use "cr" basis to save time, with 2000 data...
b2<-gam(y~s(x0,bs="cr")+s(x1,bs="cr")+s(x2,bs="cr")+
        s(x3,bs="cr"),family=poisson,data=dat,method="REML")
plot(b2,pages=1)

## drop x3, but initialize sp's from previous fit, to 
## save more time...

b2a<-gam(y~s(x0,bs="cr")+s(x1,bs="cr")+s(x2,bs="cr"),
         family=poisson,data=dat,method="REML",
         in.out=list(sp=b2$sp[1:3],scale=1))
par(mfrow=c(2,2))
plot(b2a)

par(mfrow=c(1,1))
## similar example using performance iteration
dat <- gamSim(1,n=400,dist="poisson",scale=.25)

b3<-gam(y~s(x0)+s(x1)+s(x2)+s(x3),family=poisson,
        data=dat,optimizer="perf")
plot(b3,pages=1)

## repeat using GACV as in Wood 2008...

b4<-gam(y~s(x0)+s(x1)+s(x2)+s(x3),family=poisson,
        data=dat,method="GACV.Cp",scale=-1)
plot(b4,pages=1)

## repeat using REML as in Wood 2011...

b5<-gam(y~s(x0)+s(x1)+s(x2)+s(x3),family=poisson,
        data=dat,method="REML")
plot(b5,pages=1)

 
## a binary example (see ?gam.models for large dataset version)...

dat <- gamSim(1,n=400,dist="binary",scale=.33)

lr.fit <- gam(y~s(x0)+s(x1)+s(x2)+s(x3),family=binomial,
              data=dat,method="REML")

## plot model components with truth overlaid in red
op <- par(mfrow=c(2,2))
fn <- c("f0","f1","f2","f3");xn <- c("x0","x1","x2","x3")
for (k in 1:4) {
  plot(lr.fit,residuals=TRUE,select=k)
  ff <- dat[[fn[k]]];xx <- dat[[xn[k]]]
  ind <- sort.int(xx,index.return=TRUE)$ix
  lines(xx[ind],(ff-mean(ff))[ind]*.33,col=2)
}
par(op)
anova(lr.fit)
lr.fit1 <- gam(y~s(x0)+s(x1)+s(x2),family=binomial,
               data=dat,method="REML")
lr.fit2 <- gam(y~s(x1)+s(x2),family=binomial,
               data=dat,method="REML")
AIC(lr.fit,lr.fit1,lr.fit2)

## For a Gamma example, see ?summary.gam...

## For inverse Gaussian, see ?rig

## now 2D smoothing...

eg <- gamSim(2,n=500,scale=.1)
attach(eg)

op <- par(mfrow=c(2,2),mar=c(4,4,1,1))

contour(truth$x,truth$z,truth$f) ## contour truth
b4 <- gam(y~s(x,z),data=data) ## fit model
fit1 <- matrix(predict.gam(b4,pr,se=FALSE),40,40)
contour(truth$x,truth$z,fit1)   ## contour fit
persp(truth$x,truth$z,truth$f)    ## persp truth
vis.gam(b4)                     ## persp fit
detach(eg)
par(op)

##################################################
## largish dataset example with user defined knots
##################################################

par(mfrow=c(2,2))
n <- 5000
eg <- gamSim(2,n=n,scale=.5)
attach(eg)

ind<-sample(1:n,200,replace=FALSE)
b5<-gam(y~s(x,z,k=40),data=data,
        knots=list(x=data$x[ind],z=data$z[ind]))
## various visualizations
vis.gam(b5,theta=30,phi=30)
plot(b5)
plot(b5,scheme=1,theta=50,phi=20)
plot(b5,scheme=2)

par(mfrow=c(1,1))
## and a pure "knot based" spline of the same data
b6<-gam(y~s(x,z,k=64),data=data,knots=list(x= rep((1:8-0.5)/8,8),
        z=rep((1:8-0.5)/8,rep(8,8))))
vis.gam(b6,color="heat",theta=30,phi=30)

## varying the default large dataset behaviour via `xt'
b7 <- gam(y~s(x,z,k=40,xt=list(max.knots=500,seed=2)),data=data)
vis.gam(b7,theta=30,phi=30)
detach(eg)
jmcascalheira/LGMIberiaCluster documentation built on June 8, 2021, 10 a.m.