#' Read and Tidy PDT Data File
#'
#' All PDT data are
#' stored within a `*-PDTs.csv` file that is output from either the
#' Wildlife Computers Data Portal or DAP processing software. The function
#' presumes the `*-PDTs.csv` data file is provided as-is from these sources
#' and has not been edited. The resulting output is a `tibble` that
#' adheres to tidy data principles and includes five columns (`deploy_id`,
#' `date`, `depth`, `min_te`, and `max_te`.
#'
#'
#' @param pdt_csv file path for the `*-PDTs.csv`
#'
#' @return A tibble
#' @export
#'
#'
.orders <- c("dmY HMS",
"Ymd HMS",
"HMS dbY",
"dbY HMS")
read_pdt <- function(pdt_csv) {
pdt <- readr::read_csv(pdt_csv,
progress = FALSE,
show_col_types = FALSE) %>%
dplyr::select(DeployID, Date, starts_with(c("Depth","MinTemp","MaxTemp"))) %>%
dplyr::select(-ends_with("Error"), -DepthSensor) %>%
tidyr::pivot_longer(starts_with(c("Depth","MinTemp","MaxTemp")),
names_to = ".value",
names_pattern = "(^.{0,5})",
values_drop_na = TRUE) %>%
dplyr::arrange(DeployID,Date,Depth) %>%
janitor::clean_names() %>%
dplyr::mutate(date = lubridate::parse_date_time(date, .orders))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.