knitr::opts_chunk$set( collapse=TRUE, warning=FALSE, message=FALSE, comment="#>", fig.path="man/figures/README-" ); options(knitr.table.format='markdown')
The goal of jamba is to provide useful custom functions for R data analysis and visualization.
A full online function reference is available via the pkgdown documentation:
Functions are categorized, some examples are listed below:
The R functions in jamba
have been built up, used, tested, revised
over several years. They are immediately useful for day-to-day work,
and efficient and robust enough for production pipelines.
Many were inspired by discussion from Stackoverflow, R-help, or Bioconductor, with citations thanking principal author(s). Many thanks to the original authors! The R community is built upon the collective greatness of its contributors!
Most of the functions are designed around workflows for Bioinformatics analyses, where functions need to be efficient when operating over 10,000 to 100,000 elements. (They work quite well with millions as well.) Usually the speed gains are obvious with about 100 elements, then scale linearly (or worse) as the number increases. I and others use these functions all the time.
One example function writeOpenxlsx()
is a simple wrapper around
very useful openxlsx::write.xlsx()
, which also applies column formatting
for column types: P-values, fold changes, log2 fold changes, numeric,
and integer values. Columns use conditional Excel formatting to
apply color-shading to cells for each type.
Similarly, readOpenxlsx()
is a wrapper function to openxlsx::read.xlsx()
which reads each worksheet and returns a list
of data.frame
objects.
It can detect multi-row column headers, for which it returns combined
column names. It also applies equivalent of check.names=FALSE
so
column names are returned without change.
Small and large efficiencies are used wherever possible.
The mixedSort()
functions are based upon gtools::mixedsort()
,
with additional optimizations for speed and custom needs. It sorts
chromosome names, gene names, micro-RNA names, etc.
mixedSort()
- highly efficient alphanumeric sort, for example chr1, chr2, chr3, chr10, etc.mixedSortDF()
- as above, applied to columns in a data.frame
(or matrix
, tibble
, DataFrame
, etc.)mixedSorts()
- as above, applied to a list of vectors with no speed loss.Example:
x <- sort(c( "miR-12","miR-1","miR-122","miR-1b", "miR-1a","miR-2", "miR-22", "ABCA2", "ABCA12")); df1 <- data.frame( miRNA=x, sort_rank=seq_along(x), mixedSort_rank=order(jamba::mixedOrder(x)), check.names=FALSE, stringsAsFactors=FALSE); df2 <- jamba::mixedSortDF(df1); df2;
These functions help with base R plots, in all those little cases when
the amazing ggplot2
package is not a smooth fit.
nullPlot()
- convenient "blank" base R plot, optionally displays marginsplotSmoothScatter()
- smooth scatter plot()
for point density, enhanced
over smoothScatter()
require(jamba); set.seed(123); x <- matrix(ncol=2, data=rnorm(40000*2)); x[,2] <- x[,1] + rnorm(40000)*0.15; x[1:3000,] <- t(t(x[1:3000,,drop=FALSE])+c(0.6,-0.7)); x[1:2000,2] <- x[1:2000,1] + rnorm(1000)*0.5; opar <- par("mfrow"=c(1,2), "mar"=c(2.5, 2, 3, 0.5)); smoothScatter(x, main="smoothScatter()"); plotSmoothScatter(x, main="plotSmoothScatter()"); par(opar);
plotPolygonDensity()
- fast density/histogram plot for vector or matrixplotPolygonDensity(x[,1] - x[,2]);
imageDefault()
- enhanced image()
that enables raster output with
consistent pixel aspect ratio.imageByColors()
- wrapper to image()
for a matrix or data.frame of colors,
with optional labelsset.seed(23); opar <- par("mar"=c(1,1,1,1)); m <- matrix(sample(colors(), 9), ncol=3) imageByColors(m, cellnote=m); par(opar);
minorLogTicksAxis()
- log-transformed axis labels, flexible log base, and
option for properly adjusted log2(1 + x)
format.sqrtAxis()
- draw a square-root transformed axis, with proper labels.drawLabels()
- draw square colorized text labelsshadowText()
- replacement for text()
that draws shadows or outlines.opar <- par("mar"=c(1,1,1,1)); nullPlot(fill="navy", plotAreaTitle="", doMargins=FALSE); text <- shadowText; drawLabels(txt="shadowText() label", boxColor=alpha2col("palegoldenrod", 0.6), labelCol=setTextContrastColor(alpha2col("palegoldenrod", 0.6), bg="navy"), x=1.6, y=1.3, labelCex=2); rm(text); drawLabels(txt="text() label", boxColor=alpha2col("palegoldenrod", 0.6), labelCol=setTextContrastColor(alpha2col("palegoldenrod", 0.6), bg="navy"), x=1.3, y=1.7, labelCex=2); par(opar);
groupedAxis()
- grouped axis labels to show regions/rangesdecideMfrow()
- determine appropriate value for par("mfrow")
for multipanel
output in base R plotting.getPlotAspect()
- determine visible plot aspect ratio.Every Bioinformatician/statistician needs to write data to Excel,
the writeOpenxlsx()
function is consistent and makes it look pretty.
You can save numerous worksheets in a single
Excel file, without having to go back and custom-format everything.
writeOpenxlsx()
- flexible Excel exporter, with categorical and conditional
colors.applyXlsxCategoricalFormat()
- apply categorical colors to ExcelapplyXlsxConditionalFormat()
- apply conditional colors to ExcelAlmost everything uses color somewhere, especially on R console, and in every R plot.
getColorRamp()
- flexible to create or retrieve color gradientswarpRamp()
- "bend" a color gradient to enhance the visual rangecolor2gradient()
- convert a color to gradient of n colors; or do the
same for a vectormakeColorDarker()
- adjust darkness and saturationshowColors()
- display a vector or list of colorsfixYellow()
- adjust the weird green-yellow, by personal preferenceprintDebug()
- pretty colorized text output using crayon
package.opar=par("mar"=c(1,1,1,1)); rainbowv <- c("red","yellow","green","cyan","blue","magenta"); colorlist <- list( viridis_lens5=rep(each=2, getColorRamp("viridis", n=12, lens=5)), viridis=rep(each=2, getColorRamp("viridis", n=12)), `viridis_lens-5`=rep(each=2, getColorRamp("viridis", n=12, lens=-5)), RdBu_r_lens5=rep(each=2, getColorRamp("RdBu_r", n=11, lens=5)), RdBu_r=rep(each=2, getColorRamp("RdBu_r", n=11)), `RdBu_r_lens-5`=rep(each=2, getColorRamp("RdBu_r", n=11, lens=-5)), rainbow=rep(rainbowv, each=4), rainbow_gradient2=rep(each=2, color2gradient(rainbowv, n=2, gradientWtFactor=1/3)), rainbow_gradient4=color2gradient(rainbowv, n=4, gradientWtFactor=1/3) ) showColors(colorlist, xaxt="n", labelCells=FALSE); par(opar);
Cool methods to operate on super-long lists in one call, to avoid looping
through the list either with for()
loops, lapply()
or map()
functions.
cPaste()
- highly efficient paste()
over a large list of vectorscPasteS()
- as above but using mixedSort()
before paste()
.cPasteU()
- as above but using uniques()
before paste()
.cPasteSU()
- as above but using mixedSort()
and uniques()
before paste()
.uniques()
- efficient unique()
over a list of vectorssclass()
- runs class()
on a listsdim()
, ssdim()
- dimensions of list objects, or nested list of listsrbindList()
- efficient do.call(rbind, ...)
to bind rows into a matrix or data.frame,
useful when following strsplit()
.mergeAllXY()
- merge a list of data.frame
objectsrmNULL()
- remove NULL or empty elements from a list, with optional replacementWe use R names as an additional method to make sure everything is kept in the proper order. Many R functions return results using input names, so it helps to have a really solid naming strategy. For the R functions that remove names -- I highly recommend adding them back yourself!
makeNames()
- make unique names, using flexible logicnameVector()
- add names to a vector, using its own value, or supplied namesnameVectorN()
- make named vector using the names of a vector (useful inside lapply()
)
or any function that returns data using names of the input vector.pasteByRow()
- fast, flexible row-paste with delimiters, optionally remove blankspasteByRowOrdered()
- as above but returns ordered factor, using existing
factor orders from each column when presentrowGroupMeans()
, rowRmMadOutliers()
- efficient grouped row functionsmergeAllXY()
- merge a list of data.frame
into onerenameColumn()
- rename columns from
and to
.kable_coloring()
- flexible colorized data.frame
output in Rmarkdown.gsubOrdered()
- gsub that returns ordered factor, maintians the previous factor ordergrepls()
- grep the environment (including attached packages) for object namesvgrep()
, vigrep()
- value-grep shortcutunvgrep()
, unvigrep()
- un-grep -- remove matched results from the output.provigrep()
- progressive grep, searches each pattern in order, returning
results in that orderigrepHas()
- rapid case-insensitive grep presence/absense testucfirst()
- upper-case the first letter of each word.padString()
, padInteger()
- produce strings from numeric values with
consistent leading zeros.noiseFloor()
- apply noise floor (and ceiling) with flexible replacement valueswarpAroundZero()
- warp a numeric vector symmetrically around zerorowGroupMeans()
, rowRmMadOutliers()
- efficient grouped row functionsdeg2rad()
, rad2deg()
- convert degrees to radiansrmNA()
- remove NA values, with optional replacementrmInfinite()
- remove infinite values, with optional replacement.formatInt()
- convenient format()
for integer output, with comma-delimiter by defaultjargs()
- pretty function arguments, optional pattern search argument namejargs(plotSmoothScatter)
sdim()
, ssdim()
- dimensions of list objects, or nested list of listssdima()
- runs sdim()
on the attributes of an object.isTRUEV()
, isFALSEV()
- vectorized test for TRUE or FALSE values,
since isTRUE()
only operates on single values, and does not allow NA
.printDebug()
- pretty colorized text output using crayon
package.setPrompt()
- pretty colorized R console prompt with project name and R versionnewestFile()
- most recently modified file from a vector of filesjamma
-- MA-plots (also known as "mean-variance", "Bland-Altman",
or "mean-difference" plots), relies upon jamba::plotSmoothScatter()
;
centerGeneData()
to apply flexible row-centering with optional
groups and control samples;
jammanorm()
- normalize data based upon MA-plot outputcolorjam
-- colorjam::rainbowJam()
for scalable categorical colors using alternating luminance and chroma values.genejam
-- fast, consistent conversion of gene symbols to the most current
gene nomenclaturesplicejam
-- Sashimi plots for RNA-seq datamultienrichjam
-- multiple gene set enrichment analysis and visualizationplatjam
-- platform technology functions, importers for NanoStringAdd the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.