#' Initialize the Model
#'
#' @return
#' @export
model <- function(data = pedis,
formula = any_amputation ~ p + e_ordinal_5 + d + i + s + alter_bei_aufnahme + gender,
prior = cauchy(scale = c(.5, .5, .5, .5, .5, .5, .5)),
n_iter = 1e3,
thinning = NULL,
seed = 234241,
...) {
options(mc.cores = parallel::detectCores())
# create model
model <- rstanarm::stan_glm(
formula,
data = data,
prior_intercept = normal(),
prior = prior,
family = binomial(link = "logit"),
QR = FALSE,
thin = thinning,
warmup = 500,
iter = n_iter,
seed = seed
)
# rstanarm::bayes_R2(model)
# rstanarm::posterior_interval(model)
# rstanarm::posterior_linpred(model, transform = TRUE)
# Set names of predictors
predictors <- c("Perfusion", "Extend", "Depth", "Infection", "Sensation")
# Rename columnnames of posterior parameter distribution
pedis_model <- as_pedis_model(model) %>%
set_names(c("Intercept", "Perfusion", "Extend", "Depth", "Infection", "Sensation", "Age", "Gender"))
# summarize model
summary_model <- summary(pedis_model, predictors, ...)
# plot posterior distribution (parameters, exponentiated)
p <- plot_posterior(pedis_model, predictors = predictors, prior = prior)
class(summary_model) <- append("bayesian_multivar_logreg", class(summary_model))
l <- list(summary_model, pedis_model, p, model)
return(l)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.