#parmet Bayes Sim
para_cov<-rep(0, 1000)
nonpara_cov<-rep(0, 1000)
for (i in 1:1000){
times<-rexp(30, 5)
#Our parameter of interest in parametric form is theta
#Set a prior on theta of Gamma(.01,.01)
#Then our posterior on theta is gamma with parameters:
alpha= .01+length(times)
beta = .01+sum(times)
#Approx posterior dist of theta
thetas=rgamma(10000, alpha, beta)
#Get a 95% CI on the probability of having failed by time=.4
##Now let's compare that to the BSP method
prior<-bsp(c(.1,1,2), c(.05,.8, .99), precision = .01)
posterior<-bspPosterior(prior, cbind(times,1))
#Now let's compare the series
##First let's calculate the truth Series~exp(10)
truth<-pexp(.1,10)
series_thetas<-sample(thetas, 10000, replace=T)+sample(thetas,10000, replace=T)
ci =quantile(pexp(.2, series_thetas),c(.025,.975))
para_cov[i]<-as.numeric(ci[1]<truth & truth<ci[2])
a=bspFromMoments(E1E2_series(posterior, posterior))
ci<-bspConfint(a, .1)
nonpara_cov[i]<-as.numeric(ci[1,]<truth & truth<ci[2,])
}
mean(para_cov)
mean(nonpara_cov)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.