View source: R/l2e_regression_isotonic.R
l2e_regression_isotonic | R Documentation |
l2e_regression_isotonic
performs L2E isotonic regression via block coordinate descent
with proximal gradient for updating both beta and tau.
l2e_regression_isotonic( y, b, tau, max_iter = 100, tol = 1e-04, Show.Time = TRUE )
y |
Response vector |
b |
Initial vector of regression coefficients |
tau |
Initial precision estimate |
max_iter |
Maximum number of iterations |
tol |
Relative tolerance |
Show.Time |
Report the computing time |
Returns a list object containing the estimates for beta (vector) and tau (scalar), the number of outer block descent iterations until convergence (scalar), and the number of inner iterations per outer iteration for updating beta and tau (vectors)
set.seed(12345) n <- 200 tau <- 1 x <- seq(-2.5, 2.5, length.out=n) f <- x^3 y <- f + (1/tau)*rnorm(n) # Clean Data plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray') lines(x, f, lwd=3) tau <- 1 b <- y sol <- l2e_regression_isotonic(y, b, tau) plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray') lines(x, f, lwd=3) iso <- isotone::gpava(1:n, y)$x lines(x, iso, col='blue', lwd=3) lines(x, sol$beta, col='dark green', lwd=3) # Contaminated Data ix <- 0:9 y[45 + ix] <- 14 + rnorm(10) plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray') lines(x, f, lwd=3) tau <- 1 b <- y sol <- l2e_regression_isotonic(y, b, tau) plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray') lines(x, f, lwd=3) iso <- isotone::gpava(1:n, y)$x lines(x, iso, col='blue', lwd=3) lines(x, sol$beta, col='dark green', lwd=3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.