View source: R/l2e_regression_sparse_dist.R
l2e_regression_sparse_dist | R Documentation |
l2e_regression_sparse_dist
performs robust sparse regression under the L2 criterion with the distance penalty
l2e_regression_sparse_dist( y, X, beta, tau, k, rho = 1, stepsize = 0.9, sigma = 0.5, max_iter = 100, tol = 1e-04, Show.Time = TRUE )
y |
Response vector |
X |
Design matrix |
beta |
Initial vector of regression coefficients |
tau |
Initial precision estimate |
k |
The number of nonzero entries in the estimated coefficients |
rho |
The parameter in the proximal distance algorithm |
stepsize |
The stepsize parameter for the MM algorithm (0, 1) |
sigma |
The halving parameter sigma (0, 1) |
max_iter |
Maximum number of iterations |
tol |
Relative tolerance |
Show.Time |
Report the computing time |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.