#' Inserts other economy data
#'
#' @param log log file to save output to - defaults to output to console
#'
#' @return
#' Logical - TRUE for worked ok.
#' @export
#'
#' @import purrr
#' @import dplyr
#' @import tidyr
#' @import glue
#' @import tidyxl
#' @import unpivotr
#' @import data.table
#'
#' @examples
#' run_updates()
#'
#'
#'
#'
insert_econ_other <- function(log = "") {
#### TfL ####
tryCatch({
fread("Q:/Teams/D&PA/Apps/COVID19 Recovery Dashboard/indicators_data/db/sub_updates/tfl_num_journeys2.csv") %>%
as.data.frame() %>%
clean_names() %>%
mutate(dataset = "tfl", xwhich = 2, xvarchar = "",
xvardt = as.Date(date, format = "%d/%m/%Y %H:%M"),
yval = journey_taps, yvllb = travel_mode, text = "") %>%
arrange(xvardt) %>%
insert_db()
}, error = function(e){error_log(e, "Economy - other")})
#### FROM JENKINS AUTOMATIONS ####
#### Employment ####
tryCatch({
fread("Q:/Teams/D&PA/Apps/COVID19 Recovery Dashboard/indicators_data/db/updates/employment.csv") %>%
as.data.frame() %>%
mutate(xvardt = as.Date(xvardt, origin = "1970-1-1")) %>%
arrange(xvardt) %>%
insert_db()
}, error = function(e){error_log(e, "Economy - other")})
#### Unemployment ####
tryCatch({
fread("Q:/Teams/D&PA/Apps/COVID19 Recovery Dashboard/indicators_data/db/updates/unemployment.csv") %>%
as.data.frame() %>%
mutate(xvardt = as.Date(xvardt, origin = "1970-1-1")) %>%
arrange(xvardt) %>%
insert_db()
}, error = function(e){error_log(e, "Economy - other")})
#### Heathrow ####
tryCatch({
read_excel(file.path("Q:/Teams/D&PA/Apps/COVID19 Recovery Dashboard/data/",
"economic_damage",
"Heathrow Traffic indicator spreadsheet.xlsx"),
"Indexes & graphs") %>%
mutate(Month = as.Date(Month )) %>%
select(Month, Passengers = 5, `Air transport movements` = 6,
Cargo = 7) %>%
filter(Cargo > -1) %>%
pivot_longer(-Month) %>%
mutate(dataset = "htrw", xwhich = 2, xvarchar = "", xvardt = Month,
yval = value, yvllb = name, text = "") %>%
insert_db()
}, error = function(e){error_log(e, "Economy - other")})
#### BICS ####
tryCatch({
spfl <- file.path("C:/Users/joheywood/Greater London Authority",
"/S&_IU_ GLA Economics - Resilience Dashboard",
"Business Trading.xlsx")
dates <- read_excel(spfl, 2) %>%
separate(`Reference period`, into = c("from", "to"), " to ") %>%
mutate(xvardt = as.Date(to, format = "%d %B %Y")) %>%
select(Wave, xvardt)
read_excel(spfl, 1, skip = 4) %>%
select(nuts1 = `NUTS 1`, Wave, Sector,
yval = `Paused trading and does not intend to restart in the next two weeks`) %>%
filter(nuts1 %in% "London", Sector == "All industries") %>%
left_join(dates) %>%
mutate(dataset = "bics", xwhich = 2, xvarchar = "", yvllb = "", text = "") %>%
insert_db()
# xlsx_cells(
# file.path("Q:/Teams/D&PA/Apps/COVID19 Recovery Dashboard/data/economic_damage",
# "Business site closures time series.xlsx"), "Time series") %>%
# filter(row > 5) %>%
# behead("N", "wave") %>%
# behead("N", "daterng") %>%
# behead("W", "industry") %>%
# separate(daterng, sep = "-", into = c("stdt", "endt")) %>%
# mutate(xvardt = as.Date(endt, format = "%d/%m/%y")) %>%
# filter(!is.na(numeric),
# industry == "All Industries") %>%
# mutate(dataset = "bics", xwhich = 2, xvarchar = "",
# yval = numeric, yvllb = "", text = "") %>%
# insert_db()
}, error = function(e){error_log(e, "Economy - other")})
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.