Description Usage Arguments Details Value Author(s) References Examples
Simulate sequencing data with two class, multiclass, quantitative or survival outcomes.
1 | npSeq.Simu.Data(dat, seed=10)
|
dat |
a list with elements (the first three are required): |
seed |
random seed |
This function generate all simulated data for the paper. Different outcome type: two class, multiple class, quantitative, or survival. Different distribution: Poisson, negative binomial, with/without outliers.
a list with all elements in the input dat, and
rmean |
gene expression levels. |
cmean |
sequencing depths. |
mu |
means of Poission/negative binomial distribution. |
y |
the outcome vector. |
fold.change |
the log fold change. |
n |
the count matrix |
delta |
TRUE/FALSE indicating whether a gene is differentially expressed. |
gamma |
for survival data. observed (1) or censored (0). |
Jun Li
Jun Li and Robert Tibshirani (2011). Finding consistent patterns: a nonparametric approach for identifying differential expression in RNA-Seq data. To appear, Statistical Methods in Medical Research.
Jun Li, Daniela M. Witten, Iain Johnstone, Robert Tibshirani (2011). Normalization, testing, and false discovery rate estimation for RNA-sequencing data. To appear, Biostatistics.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | ## two class Poisson-distributed data with 12 samples in each class
dat <- npSeq.Simu.Data(list(type='twoclass', option=1, NSAM=c(12, 12)))
## two class negative binomial-distributed data with outliers,
## 12 samples in each class
dat <- npSeq.Simu.Data(list(type='twoclass', option=4, NSAM=c(12, 12)))
## 4 class Poisson-distributed data with outliers,
## 6 samples in each class
dat <- npSeq.Simu.Data(list(type='multiclass', option=3, NSAM=c(6, 6, 6, 6)))
## quantitative negative binomial-distributed data with outliers,
## 24 samples totally
dat <- npSeq.Simu.Data(list(type='quant', option=4, NSAM=24))
## survival negative binomial-distributed data with outliers,
## 24 samples totally
dat <- npSeq.Simu.Data(list(type='survi', option=4, NSAM=24))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.