# Dependencies ------------------------------------------------------------
library(tidyverse)
library(readxl)
library(ifwtrends)
library(lubridate)
library(zoo)
library(gtrendsR)
library(trendecon)
library(tsibble)
library(glmnet)
# Get Google data ---------------------------------------------------------
# setwd("~/IFW/ifwtrends")
r_list <- roll(
keyword = NA,
category = c(67, 1003),
start_series = "2006-01-01",
start_period = "2018-01-01",
end = Sys.Date(),
fun = gtpreparation,
lags = 4
)
# Optionally, save it to reduce data requests at Google
# (and prevent an IP ban)
# saveRDS(r_list, "./vignettes/travel2.rds")
#
# r_list <- readRDS("./vignettes/travel2.rds")
# Read service imports data from Datastream -------------------------------
datastream <- readxl::read_xlsx("./vignettes/service_imports.xlsx") %>%
transmute(
time = floor_date(as.Date(Name), "quarter"),
value = as.numeric(`BD IMPORTS - SERVICES CONA`)
) %>%
mutate(value = c(0, diff(value, 1))) %>%
filter(time < as.Date("2021-08-01") & time > as.Date("2006-02-01"))
# Forecast the datastream data --------------------------------------------
forecast_q(r_list, datastream, fd = T)$forec %>%
left_join(datastream, by = "time") %>%
rename(Datastream = value, Estimation = index) %>%
pivot_longer(cols = -time, names_to = "id", values_to = "value") %>%
ggplot(aes(x = time, y = value, color = id)) +
geom_line() +
labs(colour = "Series", x = "Time", y = "Value", title = "Comparison between actual data from Datastream\n and estimation via Google Trends data.")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.