#' Box and whiskers plot.
#'
#' The lower and upper "hinges" correspond to the first and third quartiles
#' (the 25th and 75th percentiles). This differs slightly from the method used
#' by the \code{boxplot} function, and may be apparent with small samples.
#' See \code{\link{boxplot.stats}} for for more information on how hinge
#' positions are calculated for \code{boxplot}.
#'
#' The upper whisker extends from the hinge to the highest value that is within
#' 1.5 * IQR of the hinge, where IQR is the inter-quartile range, or distance
#' between the first and third quartiles. The lower whisker extends from the
#' hinge to the lowest value within 1.5 * IQR of the hinge. Data beyond the
#' end of the whiskers are outliers and plotted as points (as specified by Tukey).
#'
#' In a notched box plot, the notches extend \code{1.58 * IQR / sqrt(n)}.
#' This gives a roughly 95% confidence interval for comparing medians.
#' See McGill et al. (1978) for more details.
#'
#' @section Aesthetics:
#' \Sexpr[results=rd,stage=build]{ggplot2:::rd_aesthetics("geom", "boxplot")}
#'
#' @seealso \code{\link{stat_quantile}} to view quantiles conditioned on a
#' continuous variable, \code{\link{geom_jitter}} for another way to look
#' at conditional distributions.
#' @inheritParams geom_point
#' @param geom,stat Use to override the default connection between
#' \code{geom_boxplot} and \code{stat_boxplot}.
#' @param outlier.colour Override aesthetics used for the outliers. Defaults
#' come from \code{geom_point()}.
#' @param outlier.shape Override aesthetics used for the outliers. Defaults
#' come from \code{geom_point()}.
#' @param outlier.size Override aesthetics used for the outliers. Defaults
#' come from \code{geom_point()}.
#' @param outlier.stroke Override aesthetics used for the outliers. Defaults
#' come from \code{geom_point()}.
#' @param notch if \code{FALSE} (default) make a standard box plot. If
#' \code{TRUE}, make a notched box plot. Notches are used to compare groups;
#' if the notches of two boxes do not overlap, this suggests that the medians
#' are significantly different.
#' @param notchwidth for a notched box plot, width of the notch relative to
#' the body (default 0.5)
#' @param varwidth if \code{FALSE} (default) make a standard box plot. If
#' \code{TRUE}, boxes are drawn with widths proportional to the
#' square-roots of the number of observations in the groups (possibly
#' weighted, using the \code{weight} aesthetic).
#' @export
#' @references McGill, R., Tukey, J. W. and Larsen, W. A. (1978) Variations of
#' box plots. The American Statistician 32, 12-16.
#' @examples
#' p <- ggplot(mpg, aes(class, hwy))
#' p + geom_boxplot() + ylim(c(10,50))
#' p + geom_boxplotj() + ylim(c(10,50))
#' p + geom_boxplotj(fence = T) + ylim(c(10,50))
#' p + geom_boxplotj(fence = T, triangle = T) + ylim(c(10,50))
#' p + geom_boxplot() + geom_jitter(width = 0.2)
#' p + geom_boxplotj() + geom_jitterj(width = 0.2)
#' p + geom_boxplot() + coord_flip()
#' p + geom_boxplotj() + coord_flip()
#' p + geom_boxplotj(fence = T, triangle = T) + coord_flip()
#'
#' p + geom_boxplot(notch = TRUE)
#' p + geom_boxplotj(notch = TRUE)
#' p + geom_boxplotj(notch = TRUE, triangle = T)
#' p + geom_boxplot(varwidth = TRUE)
#' p + geom_boxplotj(varwidth = TRUE)
#' p + geom_boxplotj(varwidth = TRUE, triangle = T)
#' p + geom_boxplot(fill = "white", colour = "#3366FF")
#' p + geom_boxplotj(fill = "white", colour = "#3366FF", outlier.colour= "#3366FF")
#' p + geom_boxplotj(fill = "white", colour = "#3366FF", outlier.colour= "#3366FF", outlierEx.colour= "#3366FF")
#' p + geom_boxplot(outlier.colour = "red", outlier.shape = 1)
#' p + geom_boxplotj(outlier.colour = "red", outlier.shape = 1)
#'
#' # Boxplots are automatically dodged when any aesthetic is a factor
#' p + geom_boxplot(aes(fill = drv))
#' p + geom_boxplotj(aes(fill = drv))
#' p + geom_boxplotj(aes(fill = drv), fence = T)
#' p + geom_boxplotj(aes(fill = drv), fence = T, triangle = T)
#'
#' # You can also use boxplots with continuous x, as long as you supply
#' # a grouping variable. cut_width is particularly useful
#' ggplot(diamonds, aes(carat, price)) + geom_boxplot()
#' ggplot(diamonds, aes(carat, price)) + geom_boxplotj()
#' ggplot(diamonds, aes(carat, price)) +
#' geom_boxplot(aes(group = cut_width(carat, 0.25)))
#' ggplot(diamonds, aes(carat, price)) +
#' geom_boxplotj(aes(group = cut_width(carat, 0.25)))
#'
#' \donttest{
#' # It's possible to draw a boxplot with your own computations if you
#' # use stat = "identity":
#' y <- rnorm(100)
#' df <- data.frame(
#' x = 1,
#' y0 = min(y),
#' y25 = quantile(y, 0.25),
#' y50 = median(y),
#' y75 = quantile(y, 0.75),
#' y100 = max(y)
#' )
#' ggplot(df, aes(x)) +
#' geom_boxplot(
#' aes(ymin = y0, lower = y25, middle = y50, upper = y75, ymax = y100),
#' stat = "identity"
#' )
#' ggplot(df, aes(x)) +
#' geom_boxplotj(
#' aes(ymin = y0, lower = y25, middle = y50, upper = y75, ymax = y100),
#' stat = "identity"
#' )
#' }
geom_boxplotj <-
function(mapping = NULL, data = NULL, stat = "boxplotJ",
triangle = FALSE, fence = FALSE,
outlier.colour = "black", outlier.shape = 1,
outlier.size = 2, outlier.stroke = 1,
outlierEx.colour = "black", outlierEx.shape = 18,
outlierEx.size = 2, outlierEx.stroke = 1,
notch = FALSE, notchwidth = 0.5,
position = "dodge",
...,
varwidth = FALSE, show.legend = NA, inherit.aes = TRUE, na.rm = TRUE)
{
ggplot2::layer(
data = data,
mapping = mapping,
stat = stat,
geom = GeomBoxplotJ,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list(
outlier.colour = outlier.colour,
outlier.shape = outlier.shape,
outlier.size = outlier.size,
outlier.stroke = outlier.stroke,
outlierEx.colour = outlierEx.colour,
outlierEx.shape = outlierEx.shape,
outlierEx.size = outlierEx.size,
outlierEx.stroke = outlierEx.stroke,
notch = notch,
notchwidth = notchwidth,
varwidth = varwidth,
na.rm = na.rm,
triangle = triangle,
fence = fence,
...
)
)
}
#' @rdname ggplot2-ggproto
#' @format NULL
#' @usage NULL
#' @export
GeomBoxplotJ <- ggplot2::ggproto(
"GeomBoxplotJ", ggplot2::Geom,
setup_data = function(data, params) {
data$width <- data$width %||%
params$width %||% (resolution(data$x, FALSE) * 0.9)
if (!is.null(data$outliers)) {
suppressWarnings({
out_min <- vapply(data$outliers, min, numeric(1))
out_max <- vapply(data$outliers, max, numeric(1))
})
data$ymin_final <- pmin(out_min, data$ymin)
data$ymax_final <- pmax(out_max, data$ymax)
}
# if `varwidth` not requested or not available, don't use it
if (is.null(params) || is.null(params$varwidth) || !params$varwidth || is.null(data$relvarwidth)) {
data$xmin <- data$x - data$width / 2
data$xmax <- data$x + data$width / 2
} else {
# make `relvarwidth` relative to the size of the largest group
data$relvarwidth <- data$relvarwidth / max(data$relvarwidth)
data$xmin <- data$x - data$relvarwidth * data$width / 2
data$xmax <- data$x + data$relvarwidth * data$width / 2
}
data$width <- NULL
if (!is.null(data$relvarwidth)) data$relvarwidth <- NULL
data
},
draw_group = function(data, panel_scales, coord, fatten = 2,
outlier.colour = "black", outlier.shape = 19,
outlier.size = 1.5, outlier.stroke = 0.5,
outlierEx.colour = "black", outlierEx.shape = 19,
outlierEx.size = 1.5, outlierEx.stroke = 0.5,
notch = FALSE, notchwidth = 0.5, varwidth = FALSE,
triangle = FALSE, fence = FALSE) {
# print(data)
common <- data.frame(
colour = data$colour,
size = data$size,
fill = alpha(data$fill, data$alpha),
group = data$group,
stringsAsFactors = FALSE
)
# print(common)
whiskers <- data.frame(
x = data$x,
xend = data$x,
y = c(data$upper, data$lower),
yend = c(data$ymax, data$ymin),
alpha = NA,
linetype = 2,
common,
stringsAsFactors = FALSE
)
#print(head(data))
sub.whiskers <- data.frame(
x = data$xmin + (data$xmax-data$xmin)/4,
xend = data$xmax - (data$xmax-data$xmin)/4,
y = c(data$ymax,data$ymin),
yend = c(data$ymax,data$ymin),
alpha = NA,
linetype = data$linetype,
common,
stringsAsFactors = FALSE
)
#print(sub.whiskers)
if(fence){
df.fence <- data.frame(
x = data$xmin + (data$xmax-data$xmin)/6,
xend = data$xmax - (data$xmax-data$xmin)/6,
y = c(data$far.lower.fence,data$lower.fence, data$upper.fence, data$far.upper.fence),
yend = c(data$far.lower.fence,data$lower.fence,data$upper.fence,data$far.upper.fence),
alpha = NA,
linetype = c(4,3,3,4),
common,
stringsAsFactors = FALSE
)
fence_grob = GeomSegment$draw_panel(df.fence, panel_scales, coord)
}else{
fence_grob = NULL
}
box <- data.frame(
xmin = data$xmin,
xmax = data$xmax,
ymin = data$lower,
y = data$middle,
ymax = data$upper,
ynotchlower = ifelse(notch, data$notchlower, NA),
ynotchupper = ifelse(notch, data$notchupper, NA),
notchwidth = notchwidth,
alpha = data$alpha,
linetype = data$linetype,
common,
stringsAsFactors = FALSE
)
# print(data$outliers)
# print(data$colour)
# print(outlier.colour)
# print(sub.whiskers)
# print(data$outliers)
# print(outlier.colour)
if (!is.null(data$outliers) && length(data$outliers[[1]] >= 1)) {
outliers <- data.frame(
y = data$outliers[[1]],
x = data$x[1],
colour = outlier.colour %||% data$colour[1],
shape = outlier.shape %||% data$shape[1],
size = outlier.size %||% data$size[1],
stroke = outlier.stroke %||% data$stroke[1],
fill = NA,
alpha = NA,
stringsAsFactors = FALSE
)
if(!is.null(data$outliersEx) && length(data$outliersEx[[1]]>=1)){
# print("outliersEx")
outliersEx <- data.frame(
y = data$outliersEx[[1]],
x = data$x[1],
colour = outlierEx.colour %||% data$colour[1],
shape = outlierEx.shape %||% data$shape[1],
size = outlierEx.size %||% data$size[1],
stroke = outlierEx.stroke %||% data$stroke[1],
fill = NA,
alpha = NA,
stringsAsFactors = FALSE
)
outliers <- outliersEx %>% dplyr::union(outliers)
}
# print(outliers)
outliers_grob <- GeomPoint$draw_panel(outliers, panel_scales, coord)
} else {
outliers_grob <- NULL
}
if (triangle){#(!is.null(data$triangle) && length(data$triangle[[1]] >= 1)) {
tr=data$triangle[[1]]
# print(c(tr[1:3],tr[2],tr[1]))
# print(c(data$x[1],data$xmin + (data$xmax-data$xmin)/4,data$x[1],data$xmax - (data$xmax-data$xmin)/4))
df.triangle <- data.frame(
y = c(tr[1:3],tr[2],tr[1]),
x = c(data$x[1],data$xmin + (data$xmax-data$xmin)/4,data$x[1],data$xmax - (data$xmax-data$xmin)/4, data$x[1]),
fill = NA,
alpha = NA,
linetype = data$linetype,
common,
stringsAsFactors = FALSE
)
# print(triangle)
triangle_grob <- GeomPath$draw_panel(df.triangle, panel_scales, coord)
df.mean <- data.frame(
y = data$triangle[[1]][2],
x = data$x[1],
colour = data$colour[1],
shape = 1,
size = 2,#data$size[1],
stroke = 1,
fill = NA,
alpha = NA,
stringsAsFactors = FALSE
)
mean_grob = GeomPointJ$draw_panel(df.mean, panel_scales, coord)
} else {
triangle_grob <- NULL
mean_grob = NULL
}
ggname("geom_boxplotJ", grobTree(
outliers_grob,
fence_grob,
GeomSegment$draw_panel(whiskers, panel_scales, coord),
GeomSegment$draw_panel(sub.whiskers, panel_scales, coord),
GeomCrossbar$draw_panel(box, fatten = fatten, panel_scales, coord),
triangle_grob,
mean_grob
))
},
draw_key = draw_key_boxplot,
default_aes = ggplot2::aes(weight = 1, colour = "grey20", fill = "white", size = 0.5,
alpha = NA, shape = 1, linetype = "solid",
outlier.colour = "black", outlier.shape = 1, outlier.size = 1.5, outlier.stroke = 0.5,
outlierEx.colour = "black", outlierEx.shape = 2, outlierEx.size = 1.5, outlierEx.stroke = 0.5),
required_aes = c("x", "lower", "upper", "middle", "ymin", "ymax")
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.