View source: R/densityHeatmap.R
densityHeatmap | R Documentation |
Visualize Density Distribution by Heatmap
densityHeatmap(data,
density_param = list(na.rm = TRUE),
col = rev(brewer.pal(11, "Spectral")),
color_space = "LAB",
ylab = deparse(substitute(data)),
column_title = paste0("Density heatmap of ", deparse(substitute(data))),
title = column_title,
ylim = NULL,
range = ylim,
title_gp = gpar(fontsize = 14),
ylab_gp = gpar(fontsize = 12),
tick_label_gp = gpar(fontsize = 10),
quantile_gp = gpar(fontsize = 10),
show_quantiles = TRUE,
column_order = NULL,
column_names_side = "bottom",
show_column_names = TRUE,
column_names_max_height = unit(6, "cm"),
column_names_gp = gpar(fontsize = 12),
column_names_rot = 90,
cluster_columns = FALSE,
clustering_distance_columns = "ks",
clustering_method_columns = "complete",
mc.cores = 1, cores = mc.cores,
...)
data |
A matrix or a list. If it is a matrix, density is calculated by columns. |
density_param |
Parameters send to |
col |
A vector of colors that density values are mapped to. |
color_space |
The color space in which colors are interpolated. Pass to |
ylab |
Label on y-axis. |
column_title |
Title of the heatmap. |
title |
Same as |
ylim |
Ranges on the y-axis. |
range |
Same as |
title_gp |
Graphic parameters for title. |
ylab_gp |
Graphic parameters for y-labels. |
tick_label_gp |
Graphic parameters for y-ticks. |
quantile_gp |
Graphic parameters for the quantiles. |
show_quantiles |
Whether show quantile lines. |
column_order |
Order of columns. |
column_names_side |
Pass to |
show_column_names |
Pass to |
column_names_max_height |
Pass to |
column_names_gp |
Pass to |
column_names_rot |
Pass to |
cluster_columns |
Whether cluster columns? |
clustering_distance_columns |
There is a specific distance method |
clustering_method_columns |
Pass to |
mc.cores |
Multiple cores for calculating ks distance. This argument will be removed in future versions. |
cores |
Multiple cores for calculating ks distance. |
... |
Pass to |
To visualize data distribution in a matrix or in a list, we normally use
boxplot or violinplot. We can also use colors to map the density values and
visualize distribution of values through a heatmap. It is useful if you have
huge number of columns in data
to visualize.
The density matrix is generated with 500 rows ranging between the maximun and minimal values in all densities.
A Heatmap-class
object. It can oly add other heatmaps/annotations vertically.
Zuguang Gu <z.gu@dkfz.de>
https://jokergoo.github.io/ComplexHeatmap-reference/book/other-high-level-plots.html#density-heatmap
matrix = matrix(rnorm(100), 10); colnames(matrix) = letters[1:10]
densityHeatmap(matrix)
lt = list(rnorm(10), rnorm(10))
densityHeatmap(lt)
ha = HeatmapAnnotation(points = anno_points(runif(10)),
anno = rep(c("A", "B"), each = 5), col = list(anno = c("A" = "red", "B" = "blue")))
densityHeatmap(matrix, top_annotation = ha)
densityHeatmap(matrix, top_annotation = ha) %v% Heatmap(matrix, height = unit(6, "cm"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.