BridgeChangeRegHybrid | R Documentation |
Hybrid Univariate response linear change-point model with Bridge prior.
BridgeChangeRegHybrid( y, X, n.break = 0, scale.data = TRUE, intercept = TRUE, mcmc = 100, burn = 100, verbose = 100, thin = 1, reduce.mcmc = NULL, ols.weight = FALSE, c0 = 0.1, d0 = 0.1, nu.shape = 2, nu.rate = 2, known.alpha = FALSE, alpha.start = 1, alpha.limit = FALSE, alpha.MH = TRUE, beta.start = NULL, beta.alg = "SVD", regime.duration.min = 5, waic = FALSE, marginal = FALSE )
y |
Outcome vector. |
X |
Design matrix. Columns correspond to variables. |
n.break |
The number of change-point(s).
If |
scale.data |
If |
intercept |
If |
mcmc |
The number of iterations for gibbs updates. Default is 100. |
burn |
The number of burn-in periods for gibbs updates. Default is 100. |
verbose |
Iterations at which the results are printed on the console. Default is every 100th iteration. |
thin |
Thinning for gibbs updates. Default is 1 (no thinning). |
reduce.mcmc |
The number of reduced MCMC iterations for marginal likelihood computations.
If |
ols.weight |
If TRUE, OLS estimates are used for adpative lasso weight vector. |
c0 |
Scale parameter for Gamma distribution. Used for the prior of σ^2. Default is 0.1. |
d0 |
Shape parameter for Gamma distribution. Used for the prior of σ^2. Default is 0.1. |
nu.shape |
Shape parameter for Gamma distribution. Used for the prior for τ. Default is 2.0. |
nu.rate |
Rate parameter for Gamma distribution. Used for the prior for τ. Default is 2.0. |
known.alpha |
If |
alpha.start |
Starting value for alpha.
When |
alpha.limit |
If |
alpha.MH |
If |
beta.start |
Starting values of beta. If |
beta.alg |
An algorithm to sample beta.
Default is |
regime.duration.min |
The minimum length of time in each regime. Default is 5. If regime is shorter than this limit, hybrid analysis is skipped. |
waic |
If |
marginal |
If |
output
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.