View source: R/BridgeChangeSim.r
BridgeChangeSim | R Documentation |
Simulation code for univariate response change-point model with Bridge prior.
BridgeChangeSim( ntime = 500, predictor = 100, rho = 0, time.series = FALSE, standardize = TRUE, sign.change.tune = 2, sigma1 = 1, sigma2 = 2, train.ratio = 0.5, fitted.mse = TRUE, constant.p = 0.1, varying.p = 0.2, break.point = 0.5, positive.jump = FALSE, n.break = 1, intercept = FALSE, positive.jump.tune = 1, mcmc = 100, burn = 100, verbose = 100, thin = 1, N = 1, known.alpha = FALSE, dgp.only = FALSE )
ntime |
Length of time series |
predictor |
Number of predictor |
rho |
correlation parameter 0 = no correlation. |
time.series |
TRUE if dgp is generated from autocorrelated series. rho is used as an autocorrelation coefficient. |
sign.change.tune |
tuning parameter for the size of parameter sign changes |
sigma1 |
sigma 1 |
sigma2 |
sigma 2 |
train.ratio |
The proportion of training data. (0, 1). |
fitted.mse |
If TRUE and n.break == 0, compute the MSE of fitted values against true responses. If FALSE, do the cross-validation test using training data. |
constant.p |
Proportion of constant parameters |
varying.p |
Proportion of time-varying parameters |
break.point |
Timing of a break between 0 and 1. |
mcmc |
=100 |
burn |
=100 |
verbose |
=100 Verbose |
thin |
Thinning |
N |
Number of cross-sectional units. If |
dgp.only |
If TRUE, only data are generated and estimation steps are skipped. |
corr.tune |
tuning parameter for sx |
output
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.