View source: R/sparsecoint_lasso.R
SparseCointegration_Lasso | R Documentation |
Main function to perform sparse cointegration
SparseCointegration_Lasso( data, p, r, alpha = NULL, beta = NULL, max.iter = 10, conv = 10^-2, lambda_gamma, rho_omega, lambda_beta, cutoff = 0.8, tol = 1e-04, intercept = FALSE )
p |
number of lagged differences |
r |
cointegration rank |
alpha |
initial value for adjustment coefficients |
beta |
initial value for cointegrating vector |
max.iter |
maximum number of iterations |
conv |
convergence parameter |
lambda_gamma |
tuning paramter short-run effects |
rho_omega |
tuning parameter inverse error covariance matrix |
lambda_beta |
tuning paramter cointegrating vector |
cutoff |
cutoff value time series cross-validation approach |
tol |
tolerance parameter glmnet function |
Y |
Response Time Series |
X |
Time Series in Differences |
Z |
Time Series in Levels |
A list containing: beta: estimate of cointegrating vectors alpha: estimate of adjustment coefficients gamma: estimate of short-run effects omega: estimate of inverse covariance matrix
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.