determineRank: Function to determine the cointegration rank using the rank...

View source: R/rank.R

determineRankR Documentation

Function to determine the cointegration rank using the rank selection criterion

Description

Function to determine the cointegration rank using the rank selection criterion

Usage

determineRank(
  data,
  r.init = NULL,
  p,
  max.iter.lasso = 3,
  conv.lasso = 10^-2,
  max.iter.r = 5,
  beta.init,
  alpha.init,
  rho.glasso = 0.1,
  lambda.gamma,
  lambda_beta,
  intercept = FALSE,
  tol = 1e-04
)

Arguments

r.init

initial value of cointegration rank

p

number of lags to be included

max.iter.lasso

maximum number of iterations PML

conv.lasso

convergence parameter

max.iter.r

maximu number of iterations to compute cointegration rank

beta.init

initial value for beta

alpha.init

initial value for alpha

rho.glasso

tuning parameter for inverse covariance matrix

lambda.gamma

tuning parameter for GAMMA

tol

tolerance parameter glmnet function

Y

Response Time Series

X

Time Series in Differences

Z

Time Series in Levels

lambda.beta

tuning parameter for BETA

Value

A List containing; rhat: estimated cointegration rank it.r: number of iterations rhat_iterations: estimate of cointegration rank in each iteration mu: value of mu decomp: eigenvalue decomposition


jonlachmann/sparsecoint documentation built on April 14, 2022, 10:49 a.m.