nts.beta: Function to estimate beta and omega First step: Determine...

View source: R/beta.R

nts.betaR Documentation

Function to estimate beta and omega First step: Determine Beta conditional on Gamma, alpha and Omega using Lasso Regression Second step: Determine Omega conditional on Gamma, alpha and beta using GLasso

Description

Function to estimate beta and omega First step: Determine Beta conditional on Gamma, alpha and Omega using Lasso Regression Second step: Determine Omega conditional on Gamma, alpha and beta using GLasso

Usage

nts.beta(
  Y,
  X,
  Z,
  gamma,
  rank,
  P,
  alpha,
  alphastar,
  lambda = NULL,
  rho_omega,
  cutoff,
  intercept = F,
  exo = NULL,
  tol = 1e-04
)

Arguments

Y

Response Time Series

X

Time Series in Differences

Z

Time Series in Levels

gamma

estimate of short-run effects

rank

cointegration rank

P

transformation matrix P derived from Omega

alpha

estimate of adjustment coefficients

alphastar

estimate of transformed adjustment coefficients

lambda

tuning paramter cointegrating vector

rho_omega

tuning parameter inverse error covariance matrix

cutoff

cutoff value time series cross-validation approach

intercept

F do not include intercept, T include intercept in estimation short-run effects

tol

tolerance parameter glmnet function

Omega

estimate of inverse error covariance matrix

Value

A list containing: BETA: estimate of cointegrating vectors OMEGA: estimate of inverse covariance matrix


jonlachmann/sparsecoint documentation built on April 14, 2022, 10:49 a.m.