fusion_estimates: fusion_estimates

Description Usage Arguments Value Author(s) See Also Examples

Description

Find the fusion estimates of given y. Start iteration with theta and the tuning parameter lambda.

Usage

1
fusion_estimates(y, theta, lambda, max_iter = 100, eps = 1e-5)

Arguments

y

A vector of numbers.

theta

A vector of numbers that has the same length as y. If missing, then it is replaced with y.

lambda

A positive number; the tuning parameter.

max_iter

A natural number; the maximum iteration. 100 by default.

eps

A positive number; 1e-05 by default.

Value

A list:

Author(s)

Junkyu Park

See Also

Dealing with a non-separable penalty

Examples

1
2
3
4
5
6
7
8
9
set.seed(1024)
n <- 1000
t <- 1:n
f <- function(t) {t / 250 - .5}
g <- function(t) {-(.25 / 449) * t + 250 / 449}
true_theta <- c(rep(0, 249), f(250:500), rep(.75, 50), g(551:1000))
y <- true_theta + rnorm(1000, 0, 0.1)
start <- rep(.5, n)
result <- fusion_estimates(y, theta = Start, lambda = 1, max_iter = 1000)

joon3216/funpark documentation built on June 18, 2019, 7:32 a.m.