context("Revealed comparative advantage from intensity matrix")
library(compost)
# Define test matrices
mat_ls <- matrix_test_list()
# start tests
test_that("If input is wrong, throw error", {
## DONE mat is not a matrix
expect_error(
get_rca(mat = data.frame(), binary = TRUE),
"not a matrix"
)
## DONE mat contains NA values
expect_error(
get_rca(mat = matrix(c(1, NA, 3)), binary = TRUE),
"contains NA"
)
## DONE mat contains dimnames
expect_error(
get_rca(mat = matrix(c(1, 2, 3)), binary = TRUE),
"seems to lack either colnames or rownames"
)
})
test_that("Output has the right format", {
## DONE correct input gives matrix-type output (binary = TRUE)
expect_identical(
class(get_rca(mat = mat_ls$int_matrix, binary = TRUE)),
class(matrix())
)
## DONE output of function has same dimnames as int_mat (binary = TRUE)
expect_identical(
dimnames(get_rca(mat = mat_ls$int_matrix, binary = TRUE)),
dimnames(mat_ls$int_matrix)
)
## DONE output of function has same dimensions as int_mat (binary = TRUE)
expect_identical(
dim(get_rca(mat = mat_ls$int_matrix, binary = TRUE)),
dim(mat_ls$rca_matrix)
)
## DONE output of function is binary when binary = TRUE
expect_equal(
sum(
!(get_rca(mat = mat_ls$int_matrix, binary = TRUE)) %in% c(1, 0)
),
0
)
## DONE correct input gives matrix-type output (binary = FALSE)
expect_identical(
class(get_rca(mat = mat_ls$int_matrix, binary = FALSE)),
class(matrix())
)
## DONE output of function has same dimnames as int_mat (binary = TRUE)
expect_identical(
dimnames(get_rca(mat = mat_ls$int_matrix, binary = FALSE)),
dimnames(mat_ls$int_matrix)
)
## DONE output of functions has same dimensions as int_mat (binary = TRUE)
expect_identical(
dim(get_rca(mat = mat_ls$int_matrix, binary = FALSE)),
dim(mat_ls$rca_matrix)
)
## DONE output of function is not binary when binary = FALSE
expect_equal(
sum(
get_rca(mat = mat_ls$int_matrix, binary = FALSE) %in% c(1, 0)
),
0
)
})
test_that("Output values are correct", {
## DONE binary == TRUE: value 1, 1 in output matrix
expect_identical(
get_rca(mat = mat_ls$int_matrix, binary = TRUE)[1, 1],
ifelse(
(mat_ls$int_matrix[1, 1] / sum(mat_ls$int_matrix[ , 1])) / (sum(mat_ls$int_matrix[1, ])/ sum(mat_ls$int_matrix)) >= 1, 1, 0
)
)
## DONE binary == TRUE: value 2, 3 in output matrix
expect_identical(
get_rca(mat = mat_ls$int_matrix, binary = TRUE)[2, 3],
ifelse(
(mat_ls$int_matrix[2, 3] / sum(mat_ls$int_matrix[ , 3])) / (sum(mat_ls$int_matrix[2, ])/ sum(mat_ls$int_matrix)) >= 1, 1, 0
)
)
## DONE binary == FALSE: value 1, 1 in output matrix
expect_identical(
get_rca(mat = mat_ls$int_matrix, binary = FALSE)[1, 1],
(mat_ls$int_matrix[1, 1] / sum(mat_ls$int_matrix[ , 1])) / (sum(mat_ls$int_matrix[1, ])/ sum(mat_ls$int_matrix))
)
## DONE binary == FALSE: value 2, 3 in output matrix
expect_identical(
get_rca(mat = mat_ls$int_matrix, binary = FALSE)[2, 3],
(mat_ls$int_matrix[2, 3] / sum(mat_ls$int_matrix[ , 3])) / (sum(mat_ls$int_matrix[2, ])/ sum(mat_ls$int_matrix))
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.