#' Jackknife IV with Bootstrapped SEs
#'
#' This function returns point estimates and the variance-covariance matrix.
#' Written for data.table arguments.
#' @param Yvar Dependent variable
#' @param Xvar Endogenous regressor
#' @param Inc Included instruments
#' @param Exc Excluded instruments
#' @param data Of type data.table
#' @param intercept Logical, if including 1 as model intercept
#' @param tolerance Tolerance level for matrix inversion
#' @param n_boot Number of bootstrapped samples
#' @keywords jackknife linear bootstrap iv
#' @export
#' @examples
#' my.jackknife_iv_boot()
my.jackknife_iv_boot <- function(Yvar, Xvar, Inc, Exc, data, intercept=TRUE,
tolerance=1e-16, n_boot=100) {
# Select data and add intercept
Y <- data[,..Yvar]
if (length(Inc) > 0) { # If there are included instruments besides intercept
X <- data[,c(..Inc, ..Xvar)] # Must be char vector
Z <- data[,c(..Inc, ..Exc)] # Must be char vectors
} else {
X <- data[,..Xvar] # Must be char vector
Z <- data[,..Exc] # Must be char vectors
}
if (intercept) {
X <- X[,.intercept:=1]
setcolorder(X, c(".intercept"))
Z <- Z[,.intercept:=1]
setcolorder(Z, c(".intercept"))
}
# Construct jackknife instrument
ZtZinv <- solve(t(Z) %*% as.matrix(Z), tol=tolerance)
h_i <- diag(as.matrix(Z) %*% ZtZinv %*% t(Z))
Pi_hat <- t(X) %*% as.matrix(Z) %*% ZtZinv
X_jack <- (1-h_i)^(-1)*(as.matrix(Z) %*% t(Pi_hat) - h_i * X)
# Coefficients
XtXinv_jack <- solve(t(X_jack) %*% as.matrix(X), tol=tolerance)
XtY_jack <- t(X_jack) %*% as.matrix(Y)
beta <- XtXinv_jack %*% XtY_jack
colnames(beta) <- c("coefs")
# Predicted values, residuals, and squared residuals
Yhat <- as.matrix(X) %*% as.matrix(unlist(beta))
U <- as.matrix(as.matrix(Y) - Yhat)
U2 <- c(U) * c(U)
# Bootstrap coefficients matrix
Boot_betas <- matrix(0, nrow=length(beta), ncol=n_boot)
# Compute beta for each bootstrapped sample
for (b in 1:n_boot) {
# Bootstrapped data sample
index_b <- sample(1:nrow(X), size=nrow(X), replace=TRUE)
Y_b <- Y[index_b]
X_b <- X[index_b]
Z_b <- Z[index_b]
# Construct jackknife instrument
ZtZinv <- solve(t(Z_b) %*% as.matrix(Z_b), tol=tolerance)
h_i <- diag(as.matrix(Z_b) %*% ZtZinv %*% t(Z_b))
Pi_hat <- t(X_b) %*% as.matrix(Z_b) %*% ZtZinv
X_jack <- (1-h_i)^(-1)*(as.matrix(Z_b) %*% t(Pi_hat) - h_i * X_b)
# Coefficients
XtXinv_jack <- solve(t(X_jack) %*% as.matrix(X_b), tol=tolerance)
XtY_jack <- t(X_jack) %*% as.matrix(Y_b)
beta_b <- XtXinv_jack %*% XtY_jack
# Store bootstrapped coefficient
Boot_betas[,b] <- beta_b
}
# Mean of all bootstrapped coefficients
beta_b_mean <- rowMeans(Boot_betas)
# Subtract mean from coefficients, square, take mean, and then sqrt
Boot_betas <- Boot_betas - beta_b_mean
Boot_betas <- Boot_betas^2
SEs <- sqrt(rowMeans(Boot_betas))
# Return results
results <- list(beta = t(beta), SEs = SEs)
return(results)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.