Description Usage Arguments Author(s) See Also Examples
View source: R/functions_outcome_model.R
Samples from the posterior distribution of outcome model parameters, using STAN
1 2 3 4 5 6 7 8 9 10 | sample_outcome_model(
standata,
B = 1000,
warmup = B,
chains = 4,
control = list(adapt_delta = 0.9, max_treedepth = 12),
multiple_exposure_curves = FALSE,
restrictBeta = FALSE,
...
)
|
standata |
An object of class 'standata_outcome', typically created from |
B |
Number of post-warmup iterations. |
warmup |
Number of warmup iterations. |
chains |
Number of chains to sample. |
control |
List provided as the |
multiple_exposure_curves |
Logical indicating whether exposure response curves should be estimated separately by study. |
restrictBeta |
Logical indicating that model should be fit that forces a positive value for the exposure spline coefficients. |
... |
Additional arguments passed to |
Joshua Keller
create_standata_outcome, outsim_sample_observations
1 2 3 4 5 6 | data(casedataA)
outcome_dataA <- create_standata_outcome(data=casedataA)
outcome_dataA <- add_priors(outcome_dataA,
sigmaI=c(0, 0.1))
outcome_mod_fit1 <- sample_outcome_model(outcome_dataA)
print(outcome_mod_fit1, pars=c("reI_raw", "reI","mui"), include=FALSE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.