Description Usage Arguments Value Examples
This function performs hierarchical clustering for samples (tissues or columns) from expression data.
1 2 | clusterSample(data, dist.method = "spearman", hclust.method = "average",
unique.pattern = TRUE)
|
data |
numeric matrix or data frame containing expression data (count data or microarray data), where each row indicates the gene (or transcript or probeset ID), each column indicates the sample (or library), and each cell indicates the expression value (i.e., number of counts or signal intensity) of the gene in the sample. |
dist.method |
character string specifying a type for correlation
coefficient ( |
hclust.method |
character string specifying an agglomeration method
used in |
unique.pattern |
logical. If |
An object of class hclust
which describes the tree
produced by the clustering process. See hclust
for
details.
1 2 3 4 5 6 7 8 9 10 11 | # Perform sample clustering with default options.
data(hypoData)
hc <- clusterSample(hypoData)
plot(hc)
# Obtain the same result using the 'unique.pattern = FALSE' option.
data(hypoData)
keep <- as.logical(rowSums(hypoData) > 0)
data <- unique(hypoData[keep, ])
hc <- clusterSample(data, unique.pattern = FALSE)
plot(hc)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.