## ----include = FALSE-----------------------
library(tufte)
# knitr::opts_chunk$set(results = "hide", echo = FALSE)
## ---- echo = TRUE, message= FALSE, warning = FALSE----
library("jrModellingBio")
library("broom")
library("tidyverse")
## ------------------------------------------
data(two_classes, package = "jrModellingBio")
## ---- echo = TRUE--------------------------
two_classes_long = pivot_longer(two_classes,
cols = c(CYT, EXC),
names_to = "class",
values_to = "mcg")
## ---- fig.keep = 'none'--------------------
# Box plot
ggplot(two_classes_long, aes(x = class, y = mcg)) +
geom_boxplot()
# Density plot
ggplot(two_classes_long, aes(x = mcg, fill = class)) +
geom_density(alpha = 0.4)
# QQ plots
ggplot(two_classes_long, aes(sample = mcg)) +
geom_qq() +
geom_qq_line()
# Means and standard deviations
two_classes_long %>%
group_by(class) %>%
summarise(mean = round(mean(mcg), 2),
sd = round(sd(mcg), 2))
## ------------------------------------------
t.test(mcg ~ class, data = two_classes_long, var.equal = FALSE)
## ------------------------------------------
t.test(mcg ~ class, data = two_classes_long, var.equal = TRUE)
## ---- message=FALSE------------------------
wilcox.test(mcg ~ class, data = two_classes_long)
## ---- echo = TRUE--------------------------
data(yeast_classes, package = "jrModellingBio")
## ------------------------------------------
m = chisq.test(yeast_classes)
## Since p < 0.05 we can reject the null hypothesis.
## We have strong evidence that yeast proteins are distributed uniformly across subcellular localisations.
## ---- message = FALSE, warning = FALSE-----
library("broom")
m_aug = augment(m)
m_aug$.expected
## ------------------------------------------
m_aug$.stdres
## ---- echo = TRUE--------------------------
data(yeast, package = "jrModellingBio")
## ---- warning=FALSE------------------------
test = cor.test(~ mcg + gvh, data = yeast)
test
## ------------------------------------------
r2 = signif(glance(test)$estimate, 3)
## ------------------------------------------
ggplot(yeast, aes(x = mcg, y = gvh)) +
geom_point() +
annotate("label", x = 0.1, y = 0.9, label = paste("r2 = ", r2), hjust = 0)
## ---- echo = TRUE, eval = FALSE------------
# vignette("solutions1", package = "jrModellingBio")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.