#' Normalización de datos de concentraciones de metabolitos (UI)
#'
#' @param id Identificador.
#' @export
#' @import shiny
#' @import htmltools
norm_MetabMCUI <- function(id) {
sidebarLayout(
sidebarPanel(width = 2,
h6("NORMALIZACIÓN"),
h6("Valores perdidos"),
checkboxInput(NS(id, "impute"),
"Imputar"
),
numericInput(NS(id, "coff"),
"Valor de corte",
value = NULL,
min = 0,
max = 100
),
selectInput(NS(id, "immethod"),
"Método",
choices = NULL
),
h6("Normalización"),
selectInput(NS(id, "nomethod"),
"Método",
choices = list("Ninguno " = "none",
"Autoescalado"= "auto_scaling",
"Escalado de nivel" = "level_scaling",
"Escalado logarítmico" = "log_scaling",
"Transformación logarítmica" = "log_transformation",
"Gran escalado" = "vast_scaling",
"Escalado de Pareto" = "log_pareto")
),
h6("Outliers"),
checkboxInput(NS(id, "routliers"),
"Eliminar"
),
selectInput(NS(id, "oumethod"),
"Método",
choices = NULL
),
selectInput(NS(id, "ditype"),
"Distancia",
choices = NULL
),
actionButton(NS(id, "submit"),
"Aceptar",
class = "btn-sm btn-block btn-success"
)
),
mainPanel(
tabsetPanel(
tabPanel(
"Info",
icon = icon("info"),
p("Instrucciones de uso"),
strong(h3("NORMALIZACIÓN DE DATOS DE CONCENTRACIONES DE METABOLITOS",
align = "center")),
br(),
h5("En esta sección podrá normalizar los datos cargados."),
h5("La NORMALIZACIÓN presenta diferentes opciones:"),
h5("1. 'Valores perdidos': puede 'Imputar' los valores perdidos seleccionando
la casilla. Además deberá seleccionar un 'Valor de corte' que indica el
porcentaje de valores perdidos permitido en cada grupo, y el 'Método' de
imputación"),
h5("2. 'Normalización': debe seleccionar un 'Método' de normalización."),
h5("3. 'Outliers': puede 'Eliminar' los datos extremos seleccionando la
casilla. Además deberá seleccionar un 'Método' de detección y el tipo
de medida de la 'Distancia'."),
h5("Una vez haya seleccionado los parámetros correspondientes presione ACEPTAR
para realizar el procesamiento de los datos."),
h5("En las pestañas contiguas podrá ver la tabla con los datos procesados, un
resumen estadísitco de los mismos y diferentes gráficos"),
h3(div(textOutput(NS(id, "success")), align = "center", style = "color:green"))
),
tabPanel(
"Data",
icon = icon("table"),
DT::DTOutput(NS(id, "Data")),
downloadButton(NS(id, "downlData"),
class = "btn-sm btn-primary")
),
tabPanel(
"Summary",
icon = icon("terminal"),
verbatimTextOutput(NS(id, "summ_Data"))
),
navbarMenu(
"Grafics",
icon = icon("chart-bar"),
tabPanel(
"PCA",
icon = icon("chart-bar"),
plotOutput(NS(id, "pca")),
downloadButton(NS(id, "downlpca"),
class = "btn-sm btn-primary")
),
tabPanel(
"Boxplot",
icon = icon("chart-bar"),
plotOutput(NS(id, "boxplot")),
downloadButton(NS(id, "downlboxplot"),
class = "btn-sm btn-primary")
),
tabPanel(
"Density",
icon = icon("chart-bar"),
plotOutput(NS(id, "density")),
downloadButton(NS(id, "downldensity"),
class = "btn-sm btn-primary")
),
tabPanel(
"Heatmap",
icon = icon("chart-bar"),
plotOutput(NS(id, "heatmap")),
downloadButton(NS(id, "downlheatmap"),
class = "btn-sm btn-primary")
),
tabPanel(
"Heatmap Samples",
icon = icon("chart-bar"),
plotOutput(NS(id, "heatmaps")),
downloadButton(NS(id, "downlheatmaps"),
class = "btn-sm btn-primary")
)
)
)
)
)
}
#' Normalización de datos de concentraciones de metabolitos (Server)
#'
#' @param id Identificador.
#' @param data Datos cargados en el módulo \code{read_data}.
#' @export
norm_MetabMCServer <- function(id, data) {
stopifnot(is.reactive(data))
moduleServer(id, function(input, output, session) {
observeEvent(input$impute, {
if(input$impute == TRUE) {
updateNumericInput(inputId = "coff",
value = 20)
choices = list("Cero" = "none",
"Media/2" = "half_min",
"Mediana" = "median",
"Media" = "mean",
"Mínimo" = "min",
"KNN" = "knn")
updateSelectInput(inputId = "immethod",
choices = choices)
}
})
observeEvent(input$routliers, {
if(input$routliers == TRUE) {
choices <- list("Mediana" = "median",
"Centroide" = "centroid")
updateSelectInput(inputId = "oumethod",
choices = choices)
choices2 <- list("Euclídea" = "euclidean",
"Máxima" = "maximum",
"Manhattan" = "manhattan",
"Canberra" = "canberra",
"Minkiowski" = "minkiowski")
updateSelectInput(inputId = "ditype",
choices = choices2)
}
})
norm_data <- eventReactive(input$submit, {
id <- showNotification("Normalizing data...",
duration = NULL,
closeButton = FALSE,
type = "message")
on.exit(removeNotification(id), add = TRUE)
TFMjrufv::met_imp_norm(data(),
impute = input$impute,
coff = input$coff,
immethod = input$immethod,
nomethod = input$nomethod,
routliers = input$routliers,
oumethod = input$oumethod,
ditype = input$ditype)
})
output$success <- renderText({
req(norm_data())
"La normalización de los datos se ha completado!"
})
output$Data <- DT::renderDT({
req(input$submit)
Biobase::exprs(norm_data())
})
output$summ_Data <- renderPrint({
req(input$submit)
summary(Biobase::exprs(norm_data()))
})
output$pca <- renderPlot({
id <- showNotification("Drawing plot...",
duration = NULL,
closeButton = FALSE,
type = "message")
on.exit(removeNotification(id), add = TRUE)
TFMjrufv::plotTFM(norm_data(), plot = "PCA")
}, res = 96)
output$boxplot <- renderPlot({
id <- showNotification("Drawing plot...",
duration = NULL,
closeButton = FALSE,
type = "message")
on.exit(removeNotification(id), add = TRUE)
TFMjrufv::plotTFM(norm_data(), plot = "boxplot")
}, res = 96)
output$density <- renderPlot({
id <- showNotification("Drawing plot...",
duration = NULL,
closeButton = FALSE,
type = "message")
on.exit(removeNotification(id), add = TRUE)
TFMjrufv::plotTFM(norm_data(), plot = "density")
}, res = 96)
output$heatmap <- renderPlot({
id <- showNotification("Drawing plot...",
duration = NULL,
closeButton = FALSE,
type = "message")
on.exit(removeNotification(id), add = TRUE)
TFMjrufv::plotTFM(norm_data(), plot = "heatmap")
}, res = 96)
output$heatmaps <- renderPlot({
id <- showNotification("Drawing plot...",
duration = NULL,
closeButton = FALSE,
type = "message")
on.exit(removeNotification(id), add = TRUE)
TFMjrufv::plotTFM(norm_data(), plot = "heatmapS")
}, res = 96)
output$downlData <- downloadHandler(
filename = function() {
"norm_data.csv"
},
content = function(file) {
write.csv(Biobase::exprs(norm_data()), file)
}
)
output$downlpca <- downloadHandler(
filename = function() {
"norm_pca.png"
},
content = function(file) {
grDevices::png(file)
print(TFMjrufv::plotTFM(norm_data(), plot = "PCA"))
grDevices::dev.off()
}
)
output$downlboxplot <- downloadHandler(
filename = function() {
"norm_boxplot.png"
},
content = function(file) {
grDevices::png(file)
print(TFMjrufv::plotTFM(norm_data(), plot = "boxplot"))
grDevices::dev.off()
}
)
output$downldensity <- downloadHandler(
filename = function() {
"norm_density.png"
},
content = function(file) {
grDevices::png(file)
print(TFMjrufv::plotTFM(norm_data(), plot = "density"))
grDevices::dev.off()
}
)
output$downlheatmap <- downloadHandler(
filename = function() {
"norm_heatmap.png"
},
content = function(file) {
grDevices::png(file)
print(TFMjrufv::plotTFM(norm_data(), plot = "heatmap"))
grDevices::dev.off()
}
)
output$downlheatmaps <- downloadHandler(
filename = function() {
"norm_heatmapS.png"
},
content = function(file) {
grDevices::png(file)
print(TFMjrufv::plotTFM(norm_data(), plot = "heatmapS"))
grDevices::dev.off()
}
)
norm_data
})
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.