Description Usage Arguments Value Examples
View source: R/Visualization.R
Compute a PCA of the different tool used in normalization and DEG analysis step to discriminate each methods by their found p-values on each genes
1 | PCA_tools(data.to.comp)
|
data.to.comp |
dataframe containing pvalues of genes being differentially expressed, with tools used in row, and genes in columns |
Principal component analysis plot with cos2 values for each methods
1 2 3 4 5 6 7 8 9 10 11 | # Import the dataset
Data = matrix(runif(5000, 10, 100), ncol=20)
group = paste0(rep(c("control", "case"), each = 10),rep(c(1:10),each = 1))
genes <- paste0(rep(LETTERS[1:25], each=10), rep(c(1:10),each = 1))
colnames(Data) = group
row.names(Data) = genes
# Compute Pvalues for all the methods
# res.DEG = tools.DEG.RNAseq.merge(Data)
# Plotting PCA on methods
# PCA_tools(res.DEG)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.