| KernelComputer-class | R Documentation |
An S4 class to represent input for kernel matrix computations
## S4 method for signature 'KernelComputer'
show(object)
## S4 method for signature 'KernelComputer'
num_components(object)
## S4 method for signature 'KernelComputer'
num_evalpoints(object)
## S4 method for signature 'KernelComputer'
num_paramsets(object)
## S4 method for signature 'KernelComputer'
component_names(object)
object |
The object for which to call a class method. |
show(KernelComputer): Print a summary about the object.
num_components(KernelComputer): Get number of components.
num_evalpoints(KernelComputer): Get number of evaluation points.
num_paramsets(KernelComputer): Get number of parameter sets.
component_names(KernelComputer): Get component names.
inputCommon input (for example parameter values).
K_inputInput for computing kernel matrices between data points
(N x N). A list.
Ks_inputInput for computing kernel matrices between data and output
points (P x N). A list.
Kss_inputInput for computing kernel matrices between output
points (P x P). A list, empty if full_covariance=FALSE.
comp_namesComponent names (character vector).
full_covarianceBoolean value determining if this can compute full predictive covariance matrices (or just marginal variance at each point).
no_separate_output_pointsBoolean value determining if
Ks_input and Kss_input are the same thing. Using this
knowledge can reduce unnecessary computations of kernel matrices.
STREAMexternal pointer (for calling 'Stan' functions)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.