library(BayesTraj)
set.seed(2)
sim_number = 1
N=1000 #number of units
T1=8 #series 1 time periods
T2=9 #series 2 time periods
if (sim_number==1) {
pi1=c(0.5,0.2,0.3) #group membership probabilities
#transition probabilities
pi1_2=matrix(c(0.3,0.3,0.4,
0.2,0.5,0.3,
0.7,0.2,0.1),
nrow=3,ncol=3,byrow=TRUE)
#joint probability calculations
pi12 = matrix(nrow=dim(pi1_2)[1],ncol=dim(pi1_2)[2])
for (i in 1:dim(pi1_2)[1]) {
for (j in 1:dim(pi1_2)[2]) {
pi12[i,j] = pi1[i] * pi1_2[i,j]
}
}
pi2 = colSums(pi12)
pi2_1 = matrix(nrow=length(pi2),ncol=length(pi1))
for (i in 1:length(pi2)) {
for (j in 1:length(pi1)) {
pi2_1[i,j] = pi12[j,i] / pi2[i]
}
}
#series 1 coefficients
beta1=matrix(c(100,10,-0.5,0.1,
80,-1,0.5,0,
120,20,-2,0),nrow=3,ncol=4,byrow=TRUE)
#series 2 coefficients
beta2=matrix(c(90,0.4,0,0,
50,1,-0.5,0,
100,-30,3,-0.3),nrow=3,ncol=4,byrow=TRUE)
sigma1=4^2 #series 1 variance
sigma2=6^2 #series 2 variance
poly = 3 #degree of polynomial
} else if (sim_number==2) {
pi1=c(0.2,0.15,0.65) #group membership probabilities
#transition probabilities
pi1_2=matrix(c(0.4,0.3,0.4,
0.5,0.1,0.2,
0.3,0.5,0.2),
nrow=3,ncol=3,byrow=TRUE)
#series 1 coefficients
beta1=matrix(c(25,10,0,
10,-1,0.5,
30,20,0),nrow=3,ncol=3,byrow=TRUE)
#series 2 coefficients
beta2=matrix(c(25,1,0,
25,0.5,-0.2,
20,0,0),nrow=3,ncol=3,byrow=TRUE)
sigma1=2^2 #series 1 variance
sigma2=3^2 #series 2 variance
poly = 2 #degree of polynomial
}
#generate data
data = gen_data_dual(N=N,
T1=T1,
T2=T2,
pi1=pi1,
pi2=pi1_2,
beta1=beta1,
beta2=beta2,
sigma1=sigma1,
sigma2=sigma2,
poly=poly)
#unpack data
X1=data$X1
X2=data$X2
y1=data$Y1
y2=data$Y2
g1=data$g1
g2=data$g2
K1 = length(pi1)
K2 = dim(pi1_2)[2]
#estimate model with model selection#
model = dualtrajMS(X1=X1,
X2=X2,
y1=y1,
y2=y2,
K1=3,
K2=3,
time_index=2,
iterations=10000,
thin=1,
dispIter=100)
#print results
burn = 0.9
summary = summary_dual_MS(model,X1,X2,y1,y2,burn)
print(summary$estimates)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.