library(BayesTraj)
sim_number = 1
N=1000 #number of units
T=9 #time periods
if (sim_number==1) {
pi=c(0.25,0.25,0.5) #group membership probabilities
#coefficeints
beta=matrix(c(20,1,-0.3,
25,-1,0.2,
30,2,0.1),nrow=3,ncol=3,byrow=TRUE)
#variance
sigma=1.5^2
} else if (sim_number==2) {
pi=c(0.3,0.4,0.3) #group membership probabilities
#coefficeints
beta=matrix(c(5,1,-0.1,
4,0.3,0.1,
5,-1,0.1),nrow=3,ncol=3,byrow=TRUE)
#variance
sigma=1^2
}
#generate data
set.seed(1)
data = gen_data(N=N,
T=T,
pi=pi,
beta=beta,
sigma=sigma,
poly = 2)
#unpack data
X=data$X
y=data$Y
g=data$g
K = length(pi)
#estimate model
iter = 10000
thin = 1
z = matrix(1,nrow=K,ncol=dim(X)[2])
model = traj(X=X,
y=y,
K=K,
z=z,
iterations=iter,
thin=thin,
dispIter=1000,
ll=TRUE)
burn = 0.9
n1 = dim(model$c1)[1]
#print output
summary = summary_single(model,X,y,z,burn)
print(summary$estimates)
print(summary$log.likelihood)
print(summary$BIC)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.