## ---- 01-filter-adhd ----
filter_domain <- c(
# Brown Scales
"Activation",
"Focus",
"Effort",
"Emotion",
"Memory",
"Action",
"Total Composite",
# CAARS
"Inattention/Memory Problems",
"Hyperactivity/Restlessness",
"Impulsivity/Emotional Lability",
"Problems with Self-Concept",
"DSM-5 Inattentive Symptoms",
"DSM-5 Hyperactive-Impulsive Symptoms",
"DSM-5 ADHD Symptoms Total",
"ADHD Index",
"CAARS-SR Inattention/Memory Problems",
"CAARS-SR Hyperactivity/Restlessness",
"CAARS-SR Impulsivity/Emotional Lability",
"CAARS-SR Problems with Self-Concept",
"CAARS-SR DSM-5 Inattentive Symptoms",
"CAARS-SR DSM-5 Hyperactive-Impulsive Symptoms",
"CAARS-SR DSM-5 ADHD Symptoms Total",
"CAARS-SR ADHD Index",
"CAARS-OR Inattention/Memory Problems",
"CAARS-OR Hyperactivity/Restlessness",
"CAARS-OR Impulsivity/Emotional Lability",
"CAARS-OR Problems with Self-Concept",
"CAARS-OR DSM-5 Inattentive Symptoms",
"CAARS-OR DSM-5 Hyperactive-Impulsive Symptoms",
"CAARS-OR DSM-5 ADHD Symptoms Total",
"CAARS-OR ADHD Index",
# CEFI
"Full Scale",
"Attention",
"Emotion Regulation",
"Flexibility",
"Inhibitory Control",
"Initiation",
"Organization",
"Planning",
"Self-Monitoring",
"Working Memory",
"CEFI-SR Full Scale",
"CEFI-SR Attention",
"CEFI-SR Emotion Regulation",
"CEFI-SR Flexibility",
"CEFI-SR Inhibitory Control",
"CEFI-SR Initiation",
"CEFI-SR Organization",
"CEFI-SR Planning",
"CEFI-SR Self-Monitoring",
"CEFI-SR Working Memory",
"CEFI-OR Full Scale",
"CEFI-OR Attention",
"CEFI-OR Emotion Regulation",
"CEFI-OR Flexibility",
"CEFI-OR Inhibitory Control",
"CEFI-OR Initiation",
"CEFI-OR Organization",
"CEFI-OR Planning",
"CEFI-OR Self-Monitoring",
"CEFI-OR Working Memory"
)
## ---- 02-glue-adhd-sr ----
xfun::cache_rds({
dt <-
neurobehav |>
tidytable::filter(scale %in% filter_domain) |>
tidytable::filter(test == "cefi_sr" | test == "caars_sr") |>
tidytable::arrange(desc(percentile)) |>
tidytable::distinct(.keep_all = FALSE)
dt |>
glue::glue_data() |>
purrr::modify(purrr::lift(paste0)) |>
cat(dt$result,
file = "02.10_adhd.md",
fill = TRUE,
append = TRUE
)
})
## ---- 02-glue-adhd-or -----
xfun::cache_rds({
dt <-
neurobehav |>
tidytable::filter(scale %in% filter_domain) |>
tidytable::filter(test == "cefi_or" | test == "caars_or") |>
tidytable::arrange(desc(percentile)) |>
tidytable::distinct(.keep_all = FALSE)
dt |>
glue::glue_data() |>
purrr::modify(purrr::lift(paste0)) |>
cat(dt$result,
file = "02.10_adhd.md",
fill = TRUE,
append = TRUE
)
})
## ---- 05-df-adhd ----
df <-
neurobehav |>
tidytable::filter(domain == "ADHD") |>
tidytable::filter(scale %in% filter_domain) |>
tidytable::filter(!is.na(percentile)) |>
tidytable::filter(filename %in% c("caars_sr.csv", "caars_or.csv"))
## ---- 06-plot-adhd-adhd-subdomain ----
library(ggplot2)
library(ggthemes)
library(ggpubr)
library(scales)
ggplot2::ggplot(data = adhd) +
geom_segment(
aes(x = z_mean_sub,
y = reorder(subdomain, z_mean_sub),
xend = 0,
yend = subdomain),
linewidth = 0.5) +
geom_point(
aes(x = z_mean_sub, y = reorder(subdomain, z_mean_sub)),
shape = 21,
linewidth = 0.5,
color = "black",
fill =
c("#190D33", "#27123A", "#351742", "#421E4A", "#502653",
"#5C2E5A", "#683863", "#73436A", "#7B4E70", "#815875",
"#866079", "#89697D", "#8B7280", "#8C7A81", "#8E8385",
"#908A87", "#919289", "#929A8A", "#94A38D", "#96AB8F",
"#99B392", "#9CBD95", "#A2C79A", "#ACD3A0", "#B9DFA9",
"#C8EAB3", "#D8F2BD", "#E6F9C7", "#F3FCD0", "#FEFED8"),
k = length(unique(adhd$subdomain)),
size = 6
) +
theme_fivethirtyeight() +
theme(panel.background = element_rect(fill = "white")) +
theme(plot.background = element_rect(fill = "white")) +
theme(panel.border = element_rect(color = "white"))
## ---- 06-plot-adhd-adhd-narrow ----
bwu::dotplot(
data = df,
x = df$z_mean_narrow,
y = df$narrow,
domain = "ADHD"
)
## ---- 07-df-executive ----
ef <-
neurobehav |>
tidytable::filter(domain == "Executive Functioning") |>
tidytable::filter(scale %in% filter_domain) |>
tidytable::filter(!is.na(percentile)) |>
tidytable::filter(filename %in% c("cefi_sr.csv", "cefi_or.csv"))
## ---- 08-plot-executive-adhd-subdomain -----
library(ggplot2)
library(ggthemes)
library(ggpubr)
library(scales)
ggplot2::ggplot(data = ef) +
geom_segment(
aes(x = z_mean_sub,
y = reorder(subdomain, z_mean_sub),
xend = 0,
yend = subdomain),
linewidth = 0.5) +
geom_point(
aes(x = z_mean_sub, y = reorder(subdomain, z_mean_sub)),
shape = 21,
linewidth = 0.5,
color = "black",
fill =
c("#190D33", "#27123A", "#351742", "#421E4A", "#502653",
"#5C2E5A", "#683863", "#73436A", "#7B4E70", "#815875",
"#866079", "#89697D", "#8B7280", "#8C7A81", "#8E8385",
"#908A87", "#919289", "#929A8A", "#94A38D", "#96AB8F",
"#99B392", "#9CBD95", "#A2C79A", "#ACD3A0", "#B9DFA9",
"#C8EAB3", "#D8F2BD", "#E6F9C7", "#F3FCD0", "#FEFED8"),
k = length(unique(ef$subdomain)),
size = 6
) +
theme_fivethirtyeight() +
theme(panel.background = element_rect(fill = "white")) +
theme(plot.background = element_rect(fill = "white")) +
theme(panel.border = element_rect(color = "white"))
## ---- 08-plot-executive-adhd-narrow -----
bwu::dotplot(
data = df2,
x = df2$z_mean_narrow,
y = df2$narrow,
domain = "Executive Functioning"
)
## ---- 03-table-adhd ----
df_adhd <-
bwu::make_tibble(
tibb = adhd,
data = neurobehav,
pheno = "ADHD"
) |>
tidytable::filter(Scale %in% filter_domain) |>
tidytable::arrange(Test)
## ---- 03-table-executive ----
df_ef <-
bwu::make_tibble(
tibb = adhd,
data = neurobehav,
pheno = "Executive Functioning"
) |>
tidytable::filter(Scale %in% filter_domain) |>
tidytable::arrange(Test)
## ---- 03-table-merge ----
df_adhd_ef <- rbind(df_adhd, df_ef)
## ---- 04-kable-adhd ----
kableExtra::kbl(
df_adhd_ef[, 1:4],
"latex",
longtable = FALSE,
booktabs = TRUE,
linesep = "",
align = c("lccc"),
caption = "Attention and executive functions are multidimensional concepts
that contain several related processes. Both concepts require self-regulatory
skills and have some common subprocesses; therefore, it is common to treat them
together, or even to refer to both processes when talking about one or the
other."
) |>
kableExtra::kable_paper(lightable_options = "basic") |>
kableExtra::kable_styling(latex_options = c("scale_down", "HOLD_position", "striped")) |>
kableExtra::column_spec(1, width = "8cm") |>
kableExtra::pack_rows(index = table(df_adhd_ef$Test)) |>
kableExtra::row_spec(row = 0, bold = TRUE) |>
kableExtra::footnote("CAARS T-scores have a mean of 50 and a standard deviation of 10, and higher scores reflect reduced functioning. CEFI Standard scores have a mean of 100 and a standard deviation of 15, and lower scores reflect reduced functioning.", threeparttable = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.