R/scores.R

# compute the score of a bayesian network.
network.score = function(network, data, score, extra.args, debug = FALSE) {

  sum(per.node.score(network = network, data = data, score = score,
    targets = names(network$nodes), extra.args = extra.args,
    debug = debug))

}#NETWORK.SCORE

# compute single nodes' contributions to the network score.
per.node.score = function(network, data, score, targets, extra.args,
    debug = FALSE) {

  .Call("per_node_score",
        network = network,
        data = data,
        score = score,
        targets = targets,
        extra.args = extra.args,
        debug = debug)

}#PER.NODE.SCORE

# complete a prior over arcs as per Castelo and Siebes.
cs.completed.prior = function(beta, nodes) {

  beta = .Call("castelo_completion",
               prior = beta,
               nodes = nodes)

  class(beta) = c("prior", "prior.cs", "data.frame")
  attr(beta, "nodes") = nodes

  return(beta)

}#CS.COMPLETED.PRIOR
jtrecenti/bnlearn documentation built on May 20, 2019, 3:16 a.m.