bestAICsearch: Searches for clustering with the best AIC

Description Usage Arguments Value Author(s) See Also Examples

View source: R/bestAICsearch.R

Description

Determines the AIC for different numbers of clusters.

Usage

1
bestAICsearch(dataVec, minK = 2, maxK, coverage, startseed = 100, nIterations = 40, breakOnIncrease=FALSE, verbose=FALSE)

Arguments

dataVec

A vector of mutation frequencies, or a matrix or dataframe with each row corresponding to a bulk sample.

minK

Minimal number of clusters

maxK

Maximal number of clusters

coverage

Average coverage of the sequencing data

startseed

Offset for the seed for the random number generator

nIterations

Number of different iterations for each parameter pair

breakOnIncrease

Whether to exit the search over the number of clusters whenever the AIC increases

verbose

Whether to report on results for each number of clusters

Value

List of different clustering results, with AIC values, for minK:maxK.

Author(s)

Jack Kuipers

See Also

VAFclusterEM

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
coverage <- 1e4
kclust <- 3
freqs<-c(0.25,0.32,0.36)
nos <- c(5,3,1)
datas <- c()
for(ii in 1:length(nos)){
  datas<-c(datas,rnorm(nos[ii],mean=freqs[ii],sd=VAFclusterEM:::sdfromcoverage(freqs[ii],coverage)))
}
maxK <- 5
aicMatrix <- bestAICsearch(datas, minK = 2, maxK = maxK, coverage = coverage)

junseonghwan/ScRNACloneEvaluation documentation built on Aug. 18, 2020, 8:53 p.m.