B4 <-
function(pcaObject, max=NULL, lambda=NULL, lockVars=NULL) {
if(is.null(max) && is.null(lambda)){ stop('You need to provide the maximum number of variables to remove (max)\nor a threshold to filter by eigenvalues (lambda).\n'); }
if(is.numeric(lambda)){
pcaEigenvalues = getEigenvaluesFromPCA(pcaObject);
max = sum(pcaEigenvalues < lambda);
} else if(!is.numeric(max)){
stop('You have provided a non-numeric lambda or a non-numeric max parameters.\nPlease, review that values.\n');
}
if(!is.null(lambda) && (max < 1)){
warning('It was estimated "max" through "lambda" parameter. As "max" was less than 1, the process is lost. But, the program will not be broken.\n');
return(NULL);
}
pcaLoadMatrix = getLoadingsFromPCA(pcaObject);
n = dimnames(pcaLoadMatrix)[[1]];
if(is.numeric(lockVars)){
lockVars = n[lockVars];
}
load_row = nrow(pcaLoadMatrix);
load_col = ncol(pcaLoadMatrix);
sel = c()
for(i in max:1){
j = 1
m = order(pcaLoadMatrix[,load_col-i+1], decreasing=T)
m = n[m]
# If there are locked variables (that cannot be eliminated)
if(!is.null(lockVars)){
# Remove them from the sorted selection list of selection
m = setdiff(m, lockVars)
# Update dimension 1 (d1) by discounting the number of locked variable
load_row = length(m) - length(lockVars)
}
# This loop avoid the selection of the variable already selected
while((j < load_row) && (sum(sel == m[j]) > 0)){
j = j + 1
}
sel[max-i+1] = m[j]
}
return(sel);
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.