# Copyright (C) 2010 Jelmer Ypma. All Rights Reserved.
# SPDX-License-Identifier: LGPL-3.0-or-later
#
# File: test-hs071.R
# Author: Jelmer Ypma
# Date: 10 June 2010
#
# Maintenance assumed by Avraham Adler (AA) on 2023-02-10
#
# Example problem, number 71 from the Hock-Schittkowsky test suite.
#
# \min_{x} x1*x4*(x1 + x2 + x3) + x3
# s.t.
# x1*x2*x3*x4 >= 25
# x1^2 + x2^2 + x3^2 + x4^2 = 40
# 1 <= x1,x2,x3,x4 <= 5
#
# we re-write the inequality as
# 25 - x1*x2*x3*x4 <= 0
#
# and the equality as
# x1^2 + x2^2 + x3^2 + x4^2 - 40 = 0
#
# x0 = (1,5,5,1)
#
# Optimal solution = (1.00000000, 4.74299963, 3.82114998, 1.37940829)
#
# CHANGELOG:
# 2014-05-05: Changed example to use unit testing framework testthat.
# 2019-12-12: Corrected warnings and using updated testtthat framework (AA)
# 2023-02-07: Remove wrapping tests in "test_that" to reduce duplication. (AA)
#
library(nloptr)
# f(x) = x1*x4*(x1 + x2 + x3) + x3
eval_f <- function(x) {
list("objective" = x[1] * x[4] * (x[1] + x[2] + x[3]) + x[3],
"gradient" = c(x[1] * x[4] + x[4] * (x[1] + x[2] + x[3]),
x[1] * x[4],
x[1] * x[4] + 1,
x[1] * (x[1] + x[2] + x[3])))
}
# Inequality constraints.
eval_g_ineq <- function(x) {
constr <- c(25 - x[1] * x[2] * x[3] * x[4])
grad <- c(-x[2] * x[3] * x[4],
-x[1] * x[3] * x[4],
-x[1] * x[2] * x[4],
-x[1] * x[2] * x[3])
list("constraints" = constr, "jacobian" = grad)
}
# Equality constraints.
eval_g_eq <- function(x) {
constr <- c(x[1] ^ 2 + x[2] ^ 2 + x[3] ^ 2 + x[4] ^ 2 - 40)
grad <- c(2.0 * x[1],
2.0 * x[2],
2.0 * x[3],
2.0 * x[4])
list("constraints" = constr, "jacobian" = grad)
}
# Initial values.
x0 <- c(1, 5, 5, 1)
# Lower and upper bounds of control.
lb <- c(1, 1, 1, 1)
ub <- c(5, 5, 5, 5)
# Optimal solution.
solution.opt <- c(1.00000000, 4.74299963, 3.82114998, 1.37940829)
# Set optimization options.
local_opts <- list("algorithm" = "NLOPT_LD_MMA", "xtol_rel" = 1.0e-7)
opts <- list("algorithm" = "NLOPT_LD_AUGLAG",
"xtol_rel" = 1.0e-7,
"maxeval" = 1000,
"local_opts" = local_opts,
"print_level" = 0)
# Do optimization.
res <- nloptr(x0 = x0,
eval_f = eval_f,
lb = lb,
ub = ub,
eval_g_ineq = eval_g_ineq,
eval_g_eq = eval_g_eq,
opts = opts)
# Run some checks on the optimal solution.
expect_equal(res$solution, solution.opt, tolerance = 1e-5)
expect_true(all(res$solution >= lb))
expect_true(all(res$solution <= ub))
# Check whether constraints are violated (up to specified tolerance).
expect_true(
eval_g_ineq(res$solution)$constr <= res$options$tol_constraints_ineq
)
expect_equal(eval_g_eq(res$solution)$constr, 0,
tolerance = res$options$tol_constraints_eq)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.