lgbparams <- function() {
# parameter set using the paradox package
ps <- ParamSet$new(
# https://lightgbm.readthedocs.io/en/latest/Parameters.html#
# core-parameters
params = list(
#######################################
# Core Parameters
ParamFct$new(id = "task",
default = "train",
levels = c("train", "predict", "convert_model", "refit"),
tags = "train"),
ParamFct$new(id = "objective",
default = "",
levels = c("",
"regression", "regression_l1",
"huber", "fair", "poisson",
"quantile", "mape", "gamma",
"tweedie",
"binary", "multiclass",
"multiclassova",
"cross_entropy",
"cross_entropy_lambda",
"lambdarank"
),
tags = "train"),
ParamFct$new(id = "boosting",
default = "gbdt",
levels = c("gbdt", "rf", "dart", "goss"),
tags = "train"),
#% constraints: num_iterations >= 0
# Note: internally, LightGBM constructs num_class * num_iterations
# trees for multi-class classification problems
ParamInt$new(id = "num_iterations",
default = 100L,
lower = 0L,
tags = "train"),
#% constraints: learning_rate > 0.0
ParamDbl$new(id = "learning_rate",
default = 0.1,
lower = 0.0,
tags = "train"),
#% constraints: 1 < num_leaves <= 131072
ParamInt$new(id = "num_leaves",
default = 31L,
lower = 1L,
upper = 131072L,
tags = "train"),
ParamFct$new(id = "tree_learner",
default = "serial",
levels = c("serial", "feature", "data", "voting"),
tags = "train"),
ParamInt$new(id = "num_threads",
default = 1L,
lower = 0L,
tags = "train"),
ParamFct$new(id = "device_type",
default = "cpu",
levels = c("cpu", "gpu"),
tags = "train"),
ParamInt$new(id = "seed",
tags = "train"),
#######################################
# Learning Control Parameters
ParamLgl$new(id = "force_col_wise",
default = FALSE,
tags = "train"),
ParamLgl$new(id = "force_row_wise",
default = FALSE,
tags = "train"),
#% <= 0 means no limit
ParamInt$new(id = "max_depth",
default = -1L,
lower = -1L,
tags = "train"),
#% constraints: min_data_in_leaf >= 0
ParamInt$new(id = "min_data_in_leaf",
default = 20L,
lower = 0L,
tags = "train"),
#% constraints: min_sum_hessian_in_leaf >= 0.0
# Note: to enable bagging, bagging_freq should be set to a non
# zero value as well
ParamDbl$new(id = "min_sum_hessian_in_leaf",
default = 1e-3,
lower = 0,
tags = "train"),
#% constraints: 0.0 < bagging_fraction <= 1.0
ParamDbl$new(id = "bagging_fraction",
default = 1.0,
lower = 0.0,
upper = 1.0,
tags = "train"),
#% constraints: 0.0 < pos_bagging_fraction <= 1.0
# Note: to enable this, you need to set bagging_freq and
# neg_bagging_fraction as well
# Note: if both pos_bagging_fraction and neg_bagging_fraction
# are set to 1.0, balanced bagging is disabled
# Note: if balanced bagging is enabled, bagging_fraction will be ignored
ParamDbl$new(id = "pos_bagging_fraction",
default = 1.0,
lower = 0.0,
upper = 1.0,
tags = "train"),
#% constraints: 0.0 < neg_bagging_fraction <= 1.0
ParamDbl$new(id = "neg_bagging_fraction",
default = 1.0,
lower = 0,
upper = 1.0,
tags = "train"),
# Note: to enable bagging, bagging_fraction should be set to value
# smaller than 1.0 as well
ParamInt$new(id = "bagging_freq",
default = 5L,
lower = 0L,
tags = "train"),
ParamInt$new(id = "bagging_seed",
default = 3L,
tags = "train"),
#% constraints: 0.0 < feature_fraction <= 1.0
ParamDbl$new(id = "feature_fraction",
default = 1.0,
lower = 0.0,
upper = 1.0,
tags = "train"),
#% constraints: 0.0 < feature_fraction_bynode <= 1.0
# Note: unlike feature_fraction, this cannot speed up training
# Note: if both feature_fraction and feature_fraction_bynode are
# smaller than 1.0, the final fraction of each node is
#% feature_fraction * feature_fraction_bynode
ParamDbl$new(id = "feature_fraction_bynode",
default = 1.0,
lower = 0.0,
upper = 1.0,
tags = "train"),
ParamInt$new(id = "feature_fraction_seed",
default = 2L,
tags = "train"),
# <= 0 means disable
ParamInt$new(id = "early_stopping_round",
default = 0L,
tags = "train"),
ParamLgl$new(id = "first_metric_only",
default = FALSE,
tags = "train"),
# <= 0 means no constraint
ParamDbl$new(id = "max_delta_step",
default = 0.0,
tags = "train"),
#% constraints: lambda_l1 >= 0.0
ParamDbl$new(id = "lambda_l1",
default = 0.0,
lower = 0.0,
tags = "train"),
#% constraints: lambda_l2 >= 0.0
ParamDbl$new(id = "lambda_l2",
default = 0.0,
lower = 0.0,
tags = "train"),
#% constraints: min_gain_to_split >= 0.0
ParamDbl$new(id = "min_gain_to_split",
default = 0.0,
lower = 0.0,
tags = "train"),
#% constraints: 0.0 <= drop_rate <= 1.0
ParamDbl$new(id = "drop_rate",
default = 0.1,
lower = 0.0,
upper = 1.0,
tags = "train"),
# <=0 means no limit
ParamInt$new(id = "max_drop",
default = 50L,
tags = "train"),
#% constraints: 0.0 <= skip_drop <= 1.0
ParamDbl$new(id = "skip_drop",
default = 0.5,
lower = 0.0,
upper = 1.0,
tags = "train"),
ParamLgl$new(id = "xgboost_dart_mode",
default = FALSE,
tags = "train"),
ParamLgl$new(id = "uniform_drop",
default = FALSE,
tags = "train"),
ParamInt$new(id = "drop_seed",
default = 4L,
tags = "train"),
#% constraints: 0.0 <= top_rate <= 1.0
ParamDbl$new(id = "top_rate",
default = 0.2,
lower = 0.0,
upper = 1.0,
tags = "train"),
#% constraints: 0.0 <= other_rate <= 1.0
ParamDbl$new(id = "other_rate",
default = 0.1,
lower = 0.0,
upper = 1.0,
tags = "train"),
#% constraints: min_data_per_group > 0
ParamInt$new(id = "min_data_per_group",
default = 100L,
lower = 1L,
tags = "train"),
#% constraints: max_cat_threshold > 0
ParamInt$new(id = "max_cat_threshold",
default = 32L,
lower = 1L,
tags = "train"),
#% constraints: cat_l2 >= 0.0
ParamDbl$new(id = "cat_l2",
default = 10.0,
lower = 0.0,
tags = "train"),
#% constraints: cat_smooth >= 0.0
ParamDbl$new(id = "cat_smooth",
default = 10.0,
lower = 0.0,
tags = "train"),
#% constraints: max_cat_to_onehot > 0
ParamInt$new(id = "max_cat_to_onehot",
default = 4L,
lower = 1L,
tags = "train"),
#% constraints: top_k > 0
ParamInt$new(id = "top_k",
default = 20L,
lower = 1L,
tags = "train"),
#% constraints: cegb_tradeoff >= 0.0
ParamDbl$new(id = "cegb_tradeoff",
default = 1.0,
lower = 0.0,
tags = "train"),
#% constraints: cegb_penalty_split >= 0.0
ParamDbl$new(id = "cegb_penalty_split",
default = 0.0,
lower = 0.0,
tags = "train"),
#######################################
# IO Parameters
ParamInt$new(id = "verbosity",
default = 1L,
tags = "train"),
#% constraints: max_bin > 1
ParamInt$new(id = "max_bin",
default = 255L,
lower = 2L,
tags = "train"),
#% constraints: min_data_in_bin > 0
ParamInt$new(id = "min_data_in_bin",
default = 3L,
lower = 1L,
tags = "train"),
#% constraints: bin_construct_sample_cnt > 0
ParamInt$new(id = "bin_construct_sample_cnt",
default = 200000L,
lower = 1L,
tags = "train"),
# < 0 means no limit
ParamDbl$new(id = "histogram_pool_size",
default = -1.0,
tags = "train"),
ParamInt$new(id = "data_random_seed",
default = 1L,
tags = "train"),
ParamInt$new(id = "snapshot_freq",
default = -1L,
tags = "train"),
ParamLgl$new(id = "pre_partition",
default = FALSE,
tags = "train"),
ParamLgl$new(id = "enable_bundle",
default = TRUE,
tags = "train"),
#% constraints: 0.0 <= max_conflict_rate < 1.0
ParamDbl$new(id = "max_conflict_rate",
default = 0.0,
lower = 0.0,
upper = 1.0,
tags = "train"),
ParamLgl$new(id = "is_enable_sparse",
default = TRUE,
tags = "train"),
#% constraints: 0.0 < sparse_threshold <= 1.0
ParamDbl$new(id = "sparse_threshold",
default = 0.8,
lower = 0.0,
upper = 1.0,
tags = "train"),
ParamLgl$new(id = "use_missing",
default = TRUE,
tags = "train"),
ParamLgl$new(id = "zero_as_missing",
default = FALSE,
tags = "train"),
ParamLgl$new(id = "two_round",
default = FALSE,
tags = "train"),
ParamLgl$new(id = "save_binary",
default = FALSE,
tags = "train"),
ParamLgl$new(id = "header",
default = FALSE,
tags = "train"),
#######################################
# Objective Parameters
#% constraints: num_class > 0
ParamInt$new(id = "num_class",
default = 1L,
lower = 1L,
tags = "train"),
ParamLgl$new(id = "is_unbalance",
default = FALSE,
tags = "train"),
#% constraints: scale_pos_weight > 0.0
ParamDbl$new(id = "scale_pos_weight",
default = 1.0,
lower = 0.0,
tags = "train"),
#% constraints: sigmoid > 0.0
ParamDbl$new(id = "sigmoid",
default = 1.0,
lower = 0.0,
tags = "train"),
ParamLgl$new(id = "boost_from_average",
default = FALSE,
tags = "train"),
ParamLgl$new(id = "reg_sqrt",
default = FALSE,
tags = "train"),
#% constraints: alpha > 0.0
ParamDbl$new(id = "alpha",
default = 0.9,
lower = 0.0,
tags = "train"),
#% constraints: fair_c > 0.0
ParamDbl$new(id = "fair_c",
default = 1.0,
lower = 0.0,
tags = "train"),
#% constraints: poisson_max_delta_step > 0.0
ParamDbl$new(id = "poisson_max_delta_step",
default = 0.7,
lower = 0.0,
tags = "train"),
#% constraints: 1.0 <= tweedie_variance_power < 2.0
ParamDbl$new(id = "tweedie_variance_power",
default = 1.5,
lower = 1.0,
upper = 2.0,
tags = "train"),
#% constraints: max_position > 0
ParamInt$new(id = "max_position",
default = 20L,
lower = 1L,
tags = "train"),
ParamLgl$new(id = "lambdamart_norm",
default = TRUE,
tags = "train"),
# Metric Parameters
ParamFct$new(id = "metric",
default = "",
levels = c("", "None", "l1", "mean_absolute_error",
"mae", "regression_l1", "l2",
"mean_squared_error", "mse", "regression_l2",
"regression", "rmse", "root_mean_squared_error",
"l2_root", "quantile", "lambdarank",
"mean_absolute_percentage_error",
"mean_average_precision",
"mape", "huber", "fair", "poisson", "gamma",
"gamma_deviance", "tweedie", "ndcg", "map",
"cross_entropy", "cross_entropy_lambda",
"kullback_leibler", "xentropy", "xentlambda",
"kldiv",
"multiclass", "softmax", "multiclassova",
"multiclass_ova", "ova", "ovr", "binary",
"binary_logloss", "binary_error",
"multi_logloss", "auc", "multi_error"),
tags = "train"),
#% constraints: metric_freq > 0
ParamInt$new(id = "metric_freq",
default = 20L,
lower = 1L,
tags = "train"),
ParamLgl$new(id = "is_provide_training_metric",
default = FALSE,
tags = "train"),
#% constraints: multi_error_top_k > 0
ParamInt$new(id = "multi_error_top_k",
default = 1L,
lower = 1L,
tags = "train")
)
)
return(ps)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.