| cluster_genesets | R Documentation | 
This function clusters each functional gene set into strongly, variably, and weakly correlated gene sets.
cluster_genesets(sce = NULL, cormat = NULL, th_posi = NULL, th_nega = NULL)
sce | 
 A SingleCellExperiment object.  | 
cormat | 
 A correlation matrix of gene expressions.  | 
th_posi | 
 A threshold of positive correlation coefficient.  | 
th_nega | 
 A threshold of negative correlation coefficient.  | 
A SingleCellExperiment object.
data(pbmc_eg)
data(human_GO_eg)
mat <- t(as.matrix(SummarizedExperiment::assay(pbmc_eg, "centered")))
pbmc_cormat <- cor(mat, method = "spearman")
pbmcs <- list(GO = pbmc_eg)
S4Vectors::metadata(pbmcs$GO) <- list(sign = human_GO_eg[["BP"]])
pbmcs$GO <- remove_signs(sce = pbmcs$GO, min_ngenes = 2, max_ngenes = 1000)
pbmcs$GO <- cluster_genesets(sce = pbmcs$GO, cormat = pbmc_cormat,
                             th_posi = 0.24, th_nega = -0.20)
# The results are stored in `metadata(pbmcs$GO)$sign`.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.