library(xgboost)
library(Matrix)
# split train data and make xgb.DMatrix
train_data <- train[,-32]
test_data <- test[,-32]
train_label <- train$RENEWAL_STATUS__c
labels = as.numeric(train_label)
setDT(train_data)
setDT(test_data)
new_tr <- model.matrix(~.+0,data = train_data)
new_ts <- model.matrix(~.+0,data = test_data)
dtrain <- xgb.DMatrix(data = new_tr,label = labels)
dtest <- xgb.DMatrix(data = new_ts)
params <- list(
booster = "gbtree",
objective = "binary:logistic",
eta=0.2,
gamma=0,
max_depth=50,
min_child_weight=10,
subsample=0.5,
max_delta_step = 5,
colsample_bytree=1
)
#first default - model training
xgb1 <- xgb.train(
params = params
,data = dtrain
,nrounds = 100
,eval_metric = "error"
)
data_predict = predict(xgb1 , dtest)
data_predict = as.data.frame(round(data_predict))
names(data_predict)[1] = "Predicted_data"
a = table(test$RENEWAL_STATUS__c, data_predict$Predicted_data)
b <- (a[1,1] + a[2,2])/nrow(test)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.