Description Usage Arguments Details Value Author(s) Examples
CorLevelPlot provides a quick and colourful way to visualise statistically significant correlations between any combination of categorical and continuous variables. Moreover, the statistical significancies of these correlations are also provided.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | CorLevelPlot(data,
x,
y,
titleX = "",
cexTitleX = 1.0,
rotTitleX = 0,
colTitleX = "black",
fontTitleX = 2,
titleY = "",
cexTitleY = 1.0,
rotTitleY = 0,
colTitleY = "black",
fontTitleY = 2,
cexLabX = 1.0,
rotLabX = 0,
colLabX = "black",
fontLabX = 2,
cexLabY = 1.0,
rotLabY = 0,
colLabY = "black",
fontLabY = 2,
posLab = "bottomleft",
col = c("blue4", "blue3", "blue2", "blue1", "white",
"red1", "red2", "red3", "red4"),
posColKey = "right",
cexLabColKey = 1.0,
cexCorval = 1.0,
colCorval = "black",
fontCorval = 1,
scale = TRUE,
main = "",
cexMain = 2,
rotMain = 0,
colMain = "black",
fontMain = 2,
corFUN = "pearson",
corUSE = "pairwise.complete.obs",
signifSymbols = c("***", "**", "*", ""),
signifCutpoints = c(0, 0.001, 0.01, 0.05, 1),
colFrame = "white",
plotRsquared = FALSE)
|
data |
A data-frame/matrix of test correlates. Can be categorical or continuous variables. REQUIRED. |
x |
A vector of column names in data - will be converted to numerical values. REQUIRED. |
y |
A vector of column names in data - will be converted to numerical values. REQUIRED. |
titleX |
X-axis title. DEFAULT = "". OPTIONAL. |
cexTitleX |
X-axis title cex. DEFAULT = 1.0. OPTIONAL. |
rotTitleX |
X-axis title rotation in degrees. DEFAULT = 0. OPTIONAL. |
colTitleX |
X-axis title colour. DEFAULT = "black". OPTIONAL. |
fontTitleX |
X-axis title font style. 1, plain; 2, bold; 3, italic; 4, bold-italic. DEFAULT = 2. OPTIONAL. |
titleY |
Y-axis title. DEFAULT = "". OPTIONAL. |
cexTitleY |
Y-axis title cex. DEFAULT = 1.0. OPTIONAL. |
rotTitleY |
Y-axis title rotation in degrees. DEFAULT = 0. OPTIONAL. |
colTitleY |
Y-axis title colour. DEFAULT = "black". OPTIONAL. |
fontTitleY |
Y-axis title font style. 1, plain; 2, bold; 3, italic; 4, bold-italic. DEFAULT = 2. OPTIONAL. |
cexLabX |
X-axis labels cex. DEFAULT = 1.0. OPTIONAL. |
rotLabX |
X-axis labels rotation in degrees. DEFAULT = 0. OPTIONAL. |
colLabX |
X-axis labels colour. DEFAULT = "black". OPTIONAL. |
fontLabX |
X-axis labels font style. 1, plain; 2, bold; 3, italic; 4, bold-italic. DEFAULT = 2. OPTIONAL. |
cexLabY |
Y-axis labels cex. DEFAULT = 1.0. OPTIONAL. |
rotLabY |
Y-axis labels rotation in degrees. DEFAULT = 0. OPTIONAL. |
colLabY |
Y-axis labels colour. DEFAULT = "black". OPTIONAL. |
fontLabY |
Y-axis labels font style. 1, plain; 2, bold; 3, italic; 4, bold-italic. DEFAULT = 2. OPTIONAL. |
posLab |
Positioning of the X- and Y-axis labels. "bottomleft", bottom and left; "topright", top and right; "all", bottom / top and left /right; "none", no labels. DEFAULT = "bottomleft". OPTIONAL. |
col |
Colour shade gradient for RColorBrewer. DEFAULT = c("blue4", "blue3", "blue2", "blue1", "white", "red1", "red2", "red3", "red4"). OPTIONAL. |
posColKey |
Position of colour key. "bottom", "left", "top", "right". DEFAULT = "right". OPTIONAL. |
cexLabColKey |
Colour key labels cex. DEFAULT = 1.0. OPTIONAL. |
cexCorval |
Correlation values cex. DEFAULT = 1.0. OPTIONAL. |
colCorval |
Correlation values colour. DEFAULT = "black". OPTIONAL. |
fontCorval |
Correlation values font style. 1, plain; 2, bold; 3, italic; 4, bold-italic. DEFAULT = 1. OPTIONAL. |
scale |
Scale the colour range to max and min cor values? DEFAULT = TRUE. OPTIONAL. |
main |
Plot title. DEFAULT = "". OPTIONAL. |
cexMain |
Plot title cex. DEFAULT = 2. OPTIONAL. |
rotMain |
Plot title rotation in degrees. DEFAULT = 0. OPTIONAL. |
colMain |
Plot title colour. DEFAULT = "black". OPTIONAL. |
fontMain |
Plot title font style. 1, plain; 2, bold; 3, italic; 4, bold-italic. DEFAULT = 2. OPTIONAL. |
corFUN |
Correlation method: "pearson", "spearman", or "kendall". DEFAULT = "pearson". OPTIONAL. |
corUSE |
Method for handling missing values (see documentation for cor function via ?cor). "everything", "all.obs", "complete.obs", "na.or.complete", or "pairwise.complete.obs". DEFAULT = "pairwise.complete.obs". OPTIONAL. |
signifSymbols |
Statistical significance symbols to display beside correlation values. DEFAULT = c("***", "**", "*", ""). OPTIONAL. |
signifCutpoints |
Cut-points for statistical significance. DEFAULT = c(0, 0.001, 0.01, 0.05, 1). OPTIONAL. |
colFrame |
Frame colour. DEFAULT = "white". OPTIONAL. |
plotRsquared |
Plot R-squared values? TRUE / FALSE. DEFAULT = FALSE. OPTIONAL. |
CorLevelPlot provides a quick and colourful way to visualise statistically significant correlations between any combination of categorical and continuous variables. Moreover, the statistical significancies of these correlations are also provided.
A lattice
object.
Kevin Blighe <kevin@clinicalbioinformatics.co.uk>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 | # simulate trait-to-eigengene data
no.obs <- 50
ESturquoise <- 0; ESbrown <- -0.6; ESgreen <- 0.6; ESyellow <- 0
ESvector <- c(ESturquoise, ESbrown, ESgreen, ESyellow)
nGenes1 <- 3000
simulateProportions1 <- c(0.2, 0.15, 0.08, 0.06, 0.04)
set.seed(1)
MEgreen <- rnorm(no.obs)
scaledy <- MEgreen * ESgreen + sqrt(1 - ESgreen ^ 2) * rnorm(no.obs)
y <- ifelse( scaledy > median(scaledy), 2, 1)
MEturquoise <- ESturquoise * scaledy +
sqrt(1 - ESturquoise ^ 2) * rnorm(no.obs)
MEblue <- 0.6 * MEturquoise + sqrt(1 - 0.6 ^ 2) * rnorm(no.obs)
MEbrown <- ESbrown * scaledy + sqrt(1 - ESbrown ^ 2) * rnorm(no.obs)
MEyellow <- ESyellow * scaledy + sqrt(1 - ESyellow ^ 2) * rnorm(no.obs)
ModuleEigengeneNetwork1 <- data.frame(y, MEturquoise, MEblue, MEbrown,
MEgreen, MEyellow)
CorLevelPlot(data = ModuleEigengeneNetwork1,
x = c("y", "MEturquoise", "MEblue", "MEbrown", "MEgreen", "MEyellow"),
y = c("y", "MEturquoise", "MEblue", "MEbrown", "MEgreen", "MEyellow"),
titleX = "X correlates",
cexTitleX = 3.0,
rotTitleX = 0,
colTitleX = "forestgreen",
fontTitleX = 2,
titleY = "Y correlates",
cexTitleY = 2.0,
rotTitleY = 100,
colTitleY = "gold",
fontTitleY = 4,
cexLabX = 1.0,
rotLabX = 45,
colLabX = "grey20",
fontLabX = 1,
cexLabY = 1.0,
rotLabY = 30,
colLabY = "royalblue",
fontLabY = 1,
posLab = "bottomleft",
col = c("blue4", "blue3", "blue2", "blue1", "white",
"red1", "red2", "red3", "red4"),
posColKey = "right",
cexLabColKey = 1.0,
cexCorval = 1.0,
colCorval = "black",
fontCorval = 4,
scale = TRUE,
main = "WGCNA example",
cexMain = 2,
rotMain = 360,
colMain = "red4",
fontMain = 4,
corFUN = "pearson",
corUSE = "pairwise.complete.obs",
signifSymbols = c("***", "**", "*", ""),
signifCutpoints = c(0, 0.001, 0.01, 0.05, 1),
colFrame = "white",
plotRsquared = FALSE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.