Description Usage Arguments Value Author(s) See Also Examples
Function to estimate the aquifer parameters from a pumping test using several optimization functions.
1 2 | fit.optimization(ptest, model, obj.fn = "rss", opt.method = "nls",
lower = 1e-09, upper = Inf, control.par, seed = 12345)
|
ptest |
A pumping_test object. |
model |
A character string specifying the model used in the parameter estimation. |
obj.fn |
A character string specifying the objective function used in the parameter estimation. Currently the following objective functions are included:
|
opt.method |
A character string specifying the optimization method used in the parameter estimation. Currently the following methologies are included:
|
lower |
A numeric vector with the lower values of the search region |
upper |
A numeric vector with the upper values of the search region |
control.par |
A list with the parameters of the optimization method |
seed |
A random seed |
A list with the following entries:
hydraulic_parameters: hydraulic parameters of the model (includes transmissivity, storage coefficient and radius of influence, or others)
parameters: fitted parameters (including a and t0 and other depending on the model)
resfit: The list or object returned by the optimization driver of each method.
value: The value of the objective function reached at the end of the optimization run.
Oscar Garcia-Cabrejo khaors@gmail.com
Other base functions: additional.parameters<-
,
confint.pumping_test
,
confint_bootstrap
,
confint_jackniffe
,
confint_wald
, estimated<-
,
evaluate
, fit.parameters<-
,
fit.sampling
, fit
,
hydraulic.parameter.names<-
,
hydraulic.parameters<-
,
model.parameters
, model<-
,
plot.pumping_test
,
plot_model_diagnostic
,
plot_sample_influence
,
plot_uncert
,
print.pumping_test
,
pumping_test
, simulate
,
summary.pumping_test
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ## Not run:
# Define pumping_test object
data("boulton")
ptest.boulton <- pumping_test("Well1", Q = 0.03, r = 20,
t = boulton$t, s = boulton$s)
# Parameter estimation using L-BFGS-B
ptest.boulton.bfgs.rss <- fit.optimization(ptest.boulton,
"boulton", obj.fn = "rss", opt.method = "l-bfgs-b",
seed = 54321)
# Parameter estimation using Simulated Annealing
ptest.boulton.sa.rss <- fit.optimization(ptest.boulton,
"boulton", obj.fn = "rss", opt.method = "sa", seed = 54321)
# Parameter estimation using Genetic Algorithms
ptest.boulton.ga.rss <- fit.optimization(ptest.boulton,
"boulton", obj.fn = "rss", opt.method = "ga", seed = 54321)
# Parameter estimation using Differential Evolution
ptest.boulton.de.rss <- fit.optimization(ptest.boulton,
"boulton", obj.fn = "rss", opt.method = "de", seed = 54321)
# Parameter estimation using Particle Swarm Optimization
ptest.boulton.pso.rss <- fit.optimization(ptest.boulton,
"boulton", obj.fn = "rss", opt.method = "pso", seed = 54321)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.