| NR | R Documentation | 
Newton-Raphson method
NR(
  start,
  objective = NULL,
  gradient = NULL,
  hessian = NULL,
  control,
  args = NULL,
  ...
)
| start | Starting value | 
| objective | Optional objective function (used for selecting step length) | 
| gradient | gradient | 
| hessian | hessian (if NULL a numerical derivative is used) | 
| control | optimization arguments (see details) | 
| args | Optional list of arguments parsed to objective, gradient and hessian | 
| ... | additional arguments parsed to lower level functions | 
control should be a list with one or more of the following components:
trace integer for which output is printed each 'trace'th iteration
iter.max number of iterations
stepsize: Step size (default 1)
nstepsize: Increase stepsize every nstepsize iteration (from stepsize to 1)
tol: Convergence criterion (gradient)
epsilon: threshold used in pseudo-inverse
backtrack: In each iteration reduce stepsize unless solution is improved according to criterion (gradient, armijo, curvature, wolfe)
# Objective function with gradient and hessian as attributes
f <- function(z) {
   x <- z[1]; y <- z[2]
   val <- x^2 + x*y^2 + x + y
   structure(val, gradient=c(2*x+y^2+1, 2*y*x+1),
             hessian=rbind(c(2,2*y),c(2*y,2*x)))
}
NR(c(0,0),f)
# Parsing arguments to the function and
g <- function(x,y) (x*y+1)^2
NR(0, gradient=g, args=list(y=2), control=list(trace=1,tol=1e-20))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.