mvnmix | R Documentation |
Estimate mixture latent variable model
mvnmix( data, k = 2, theta, steps = 500, tol = 1e-16, lambda = 0, mu = NULL, silent = TRUE, extra = FALSE, n.start = 1, init = "kmpp", ... )
data |
|
k |
Number of mixture components |
theta |
Optional starting values |
steps |
Maximum number of iterations |
tol |
Convergence tolerance of EM algorithm |
lambda |
Regularisation parameter. Added to diagonal of covariance matrix (to avoid singularities) |
mu |
Initial centres (if unspecified random centres will be chosen) |
silent |
Turn on/off output messages |
extra |
Extra debug information |
n.start |
Number of restarts |
init |
Function to choose initial centres |
... |
Additional arguments parsed to lower-level functions |
Estimate parameters in a mixture of latent variable models via the EM algorithm.
A mixture
object
Klaus K. Holst
mixture
data(faithful) set.seed(1) M1 <- mvnmix(faithful[,"waiting",drop=FALSE],k=2) M2 <- mvnmix(faithful,k=2) if (interactive()) { par(mfrow=c(2,1)) plot(M1,col=c("orange","blue"),ylim=c(0,0.05)) plot(M2,col=c("orange","blue")) }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.