mvnmix | R Documentation |
Estimate mixture latent variable model
mvnmix(
data,
k = 2,
theta,
steps = 500,
tol = 1e-16,
lambda = 0,
mu = NULL,
silent = TRUE,
extra = FALSE,
n.start = 1,
init = "kmpp",
...
)
data |
|
k |
Number of mixture components |
theta |
Optional starting values |
steps |
Maximum number of iterations |
tol |
Convergence tolerance of EM algorithm |
lambda |
Regularisation parameter. Added to diagonal of covariance matrix (to avoid singularities) |
mu |
Initial centres (if unspecified random centres will be chosen) |
silent |
Turn on/off output messages |
extra |
Extra debug information |
n.start |
Number of restarts |
init |
Function to choose initial centres |
... |
Additional arguments parsed to lower-level functions |
Estimate parameters in a mixture of latent variable models via the EM algorithm.
A mixture
object
Klaus K. Holst
mixture
data(faithful)
set.seed(1)
M1 <- mvnmix(faithful[,"waiting",drop=FALSE],k=2)
M2 <- mvnmix(faithful,k=2)
if (interactive()) {
par(mfrow=c(2,1))
plot(M1,col=c("orange","blue"),ylim=c(0,0.05))
plot(M2,col=c("orange","blue"))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.