sim.default | R Documentation |
Applies a function repeatedly for a specified number of replications or over a list/data.frame with plot and summary methods for summarizing the Monte Carlo experiment. Can be parallelized via the future package (use the future::plan function).
## Default S3 method:
sim(
x = NULL,
R = 100,
f = NULL,
colnames = NULL,
seed = NULL,
args = list(),
iter = FALSE,
mc.cores,
...
)
x |
function or 'sim' object |
R |
Number of replications or data.frame with parameters |
f |
Optional function (i.e., if x is a matrix) |
colnames |
Optional column names |
seed |
(optional) Seed (needed with cl=TRUE) |
args |
(optional) list of named arguments passed to (mc)mapply |
iter |
If TRUE the iteration number is passed as first argument to (mc)mapply |
mc.cores |
Optional number of cores. Will use parallel::mcmapply instead of future |
... |
Additional arguments to future.apply::future_mapply |
To parallelize the calculation use the future::plan function (e.g., future::plan(multisession()) to distribute the calculations over the R replications on all available cores). The output is controlled via the progressr package (e.g., progressr::handlers(global=TRUE) to enable progress information).
summary.sim plot.sim print.sim
m <- lvm(y~x+e)
distribution(m,~y) <- 0
distribution(m,~x) <- uniform.lvm(a=-1.1,b=1.1)
transform(m,e~x) <- function(x) (1*x^4)*rnorm(length(x),sd=1)
onerun <- function(iter=NULL,...,n=2e3,b0=1,idx=2) {
d <- sim(m,n,p=c("y~x"=b0))
l <- lm(y~x,d)
res <- c(coef(summary(l))[idx,1:2],
confint(l)[idx,],
estimate(l,only.coef=TRUE)[idx,2:4])
names(res) <- c("Estimate","Model.se","Model.lo","Model.hi",
"Sandwich.se","Sandwich.lo","Sandwich.hi")
res
}
val <- sim(onerun,R=10,b0=1)
val
val <- sim(val,R=40,b0=1) ## append results
summary(val,estimate=c(1,1),confint=c(3,4,6,7),true=c(1,1))
summary(val,estimate=c(1,1),se=c(2,5),names=c("Model","Sandwich"))
summary(val,estimate=c(1,1),se=c(2,5),true=c(1,1),names=c("Model","Sandwich"),confint=TRUE)
if (interactive()) {
plot(val,estimate=1,c(2,5),true=1,names=c("Model","Sandwich"),polygon=FALSE)
plot(val,estimate=c(1,1),se=c(2,5),main=NULL,
true=c(1,1),names=c("Model","Sandwich"),
line.lwd=1,col=c("gray20","gray60"),
rug=FALSE)
plot(val,estimate=c(1,1),se=c(2,5),true=c(1,1),
names=c("Model","Sandwich"))
}
f <- function(a=1, b=1) {
rep(a*b, 5)
}
R <- Expand(a=1:3, b=1:3)
sim(f, R)
sim(function(a,b) f(a,b), 3, args=c(a=5,b=5))
sim(function(iter=1,a=5,b=5) iter*f(a,b), iter=TRUE, R=5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.