Prior: Prior distributions for response probability

Description Usage Arguments See Also Examples

Description

badr supports PointMass, Beta, BetaMixture, and JeffreysPrior distributions for the reponse probability. The probability density function and cumulative probability functions are available via density and cdf methods. The mean of a distribution can quickly be accessed via mean.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
## S4 method for signature 'Prior'
density(x, p)

cdf(prior, p, ...)

## S4 method for signature 'Prior,numeric'
cdf(prior, p)

## S4 method for signature 'Prior'
mean(x)

PointMass(p)

Beta(a, b)

Beta_mu_sd(mu, sd)

JeffreysPrior(design)

Arguments

x

Prior distribution object (density)

p

probability atom, i.e. the response probability equals p almost surely.

prior

Prior distribution object

a

Beta distribution parameter

b

Beta distribution paramter

mu

mean parameter

sd

standard deviation paramter

design

Design object

See Also

condition for restricting the support of a prior, updating for Bayesian posterior updates

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
badr::load_julia_package()

## Not run: 
  density(Beta(1, 1), seq(0, 1, .1)) == 1 # uniform distribution on [0, 1]

## End(Not run)
## Not run: 
  cdf(PointMass(1/3), c(0.3, 1/3)) == c(0, 1)

## End(Not run)
## Not run: 
  mean(Beta(5, 7)) == 5/(5 + 7)

## End(Not run)
## Not run: 
  PointMass(0.4)

## End(Not run)
## Not run: 
  Beta(5, 7)
  1/3*Beta(5, 7) + 2/3*Beta(1,1) # create a BetaMixture distribution

## End(Not run)
## Not run: 
  Beta_mu_sd(.3, .2)

## End(Not run)
## Not run: 
  design <- Design(c(0, 30, 25, 0), c(Inf, 10, 7, -Inf))
  JeffreysPrior(design)

## End(Not run)

kkmann/badr documentation built on Oct. 18, 2020, 5:22 p.m.